Cargando…
Guiding Efficient, Effective, and Patient-Oriented Electrolyte Replacement in Critical Care: An Artificial Intelligence Reinforcement Learning Approach
Both provider- and protocol-driven electrolyte replacement have been linked to the over-prescription of ubiquitous electrolytes. Here, we describe the development and retrospective validation of a data-driven clinical decision support tool that uses reinforcement learning (RL) algorithms to recommen...
Autores principales: | Prasad, Niranjani, Mandyam, Aishwarya, Chivers, Corey, Draugelis, Michael, Hanson, C. William, Engelhardt, Barbara E., Laudanski, Krzysztof |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9143326/ https://www.ncbi.nlm.nih.gov/pubmed/35629084 http://dx.doi.org/10.3390/jpm12050661 |
Ejemplares similares
-
Remote Monitoring of Critically-Ill Post-Surgical Patients: Lessons from a Biosensor Implementation Trial
por: Restrepo, Mariana, et al.
Publicado: (2021) -
Examination of Electrolyte Replacements in the ICU Utilizing MIMIC-III Dataset Demonstrates Redundant Replacement Patterns
por: Ghannam, Mousa, et al.
Publicado: (2021) -
Sparse multi-output Gaussian processes for online medical time series prediction
por: Cheng, Li-Fang, et al.
Publicado: (2020) -
Artificial intelligence for detecting electrolyte imbalance using electrocardiography
por: Kwon, Joon‐myoung, et al.
Publicado: (2021) -
Application of machine learning approaches to administrative claims data to predict clinical outcomes in medical and surgical patient populations
por: MacKay, Emily J., et al.
Publicado: (2021)