Cargando…

Liposomal Formulations to Improve Antioxidant Power of Myrtle Berry Extract for Potential Skin Application

Many substances in plant extracts are known for their biological activities. These substances act in different ways, exerting overall protective effects against many diseases, especially skin disorders. However, plant extracts’ health benefits are often limited by low bioavailability. To overcome th...

Descripción completa

Detalles Bibliográficos
Autores principales: De Luca, Maria, Lucchesi, Daniela, Tuberoso, Carlo Ignazio Giovanni, Fernàndez-Busquets, Xavier, Vassallo, Antonio, Martelli, Giuseppe, Fadda, Anna Maria, Pucci, Laura, Caddeo, Carla
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9143335/
https://www.ncbi.nlm.nih.gov/pubmed/35631495
http://dx.doi.org/10.3390/pharmaceutics14050910
Descripción
Sumario:Many substances in plant extracts are known for their biological activities. These substances act in different ways, exerting overall protective effects against many diseases, especially skin disorders. However, plant extracts’ health benefits are often limited by low bioavailability. To overcome these limitations, drug delivery systems can be employed. In this study, we evaluated the antioxidant power of an ethanolic extract from Myrtus communis L. (myrtle) berries through colorimetric tests (DPPH and FRAP). The antioxidant activity was also verified by using fibroblast cell culture through cellular Reactive Oxygen Species (ROS) levels measurements. Moreover, the myrtle extract was formulated in phospholipid vesicles to improve its bioavailability and applicability. Myrtle liposomes were characterized by size, surface charge, storage stability, and entrapment efficiency; visualized by using cryo-TEM images; and assayed for cytocompatibility and anti-ROS activity. Our results suggest that myrtle liposomes were cytocompatible and improved the extract’s antioxidant power in fibroblasts, suggesting a potential skin application for these formulations and confirming that nanotechnologies could be a valid tool to enhance plant extracts’ potentialities.