Cargando…

Mid-Infrared Response from Cr/n-Si Schottky Junction with an Ultra-Thin Cr Metal

Infrared detection technology has been widely applied in many areas. Unlike internal photoemission and the photoelectric mechanism, which are limited by the interface barrier height and material bandgap, the research of the hot carrier effect from nanometer thickness of metal could surpass the capab...

Descripción completa

Detalles Bibliográficos
Autores principales: Su, Zih-Chun, Li, Yu-Hao, Lin, Ching-Fuh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9143420/
https://www.ncbi.nlm.nih.gov/pubmed/35630971
http://dx.doi.org/10.3390/nano12101750
_version_ 1784715801927876608
author Su, Zih-Chun
Li, Yu-Hao
Lin, Ching-Fuh
author_facet Su, Zih-Chun
Li, Yu-Hao
Lin, Ching-Fuh
author_sort Su, Zih-Chun
collection PubMed
description Infrared detection technology has been widely applied in many areas. Unlike internal photoemission and the photoelectric mechanism, which are limited by the interface barrier height and material bandgap, the research of the hot carrier effect from nanometer thickness of metal could surpass the capability of silicon-based Schottky devices to detect mid-infrared and even far-infrared. In this work, we investigate the effects of physical characteristics of Cr nanometal surfaces and metal/silicon interfaces on hot carrier optical detection. Based on the results of scanning electron microscopy, atomic force microscopy, and X-ray diffraction analysis, the hot carrier effect and the variation of optical response intensity are found to depend highly on the physical properties of metal surfaces, such as surface coverage, metal thickness, and internal stress. Since the contact layer formed by Cr and Si is the main role of infrared light detection in the experiment, the higher the metal coverage, the higher the optical response. Additionally, a thicker metal surface makes the hot carriers take a longer time to convert into current signals after generation, leading to signal degradation due to the short lifetime of the hot carriers. Furthermore, the film with the best hot carrier effect induced in the Cr/Si structure is able to detect an infrared signal up to 4.2 μm. Additionally, it has a 229 times improvement in the signal-to-noise ratio (SNR) for a single band compared with ones with less favorable conditions.
format Online
Article
Text
id pubmed-9143420
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-91434202022-05-29 Mid-Infrared Response from Cr/n-Si Schottky Junction with an Ultra-Thin Cr Metal Su, Zih-Chun Li, Yu-Hao Lin, Ching-Fuh Nanomaterials (Basel) Article Infrared detection technology has been widely applied in many areas. Unlike internal photoemission and the photoelectric mechanism, which are limited by the interface barrier height and material bandgap, the research of the hot carrier effect from nanometer thickness of metal could surpass the capability of silicon-based Schottky devices to detect mid-infrared and even far-infrared. In this work, we investigate the effects of physical characteristics of Cr nanometal surfaces and metal/silicon interfaces on hot carrier optical detection. Based on the results of scanning electron microscopy, atomic force microscopy, and X-ray diffraction analysis, the hot carrier effect and the variation of optical response intensity are found to depend highly on the physical properties of metal surfaces, such as surface coverage, metal thickness, and internal stress. Since the contact layer formed by Cr and Si is the main role of infrared light detection in the experiment, the higher the metal coverage, the higher the optical response. Additionally, a thicker metal surface makes the hot carriers take a longer time to convert into current signals after generation, leading to signal degradation due to the short lifetime of the hot carriers. Furthermore, the film with the best hot carrier effect induced in the Cr/Si structure is able to detect an infrared signal up to 4.2 μm. Additionally, it has a 229 times improvement in the signal-to-noise ratio (SNR) for a single band compared with ones with less favorable conditions. MDPI 2022-05-20 /pmc/articles/PMC9143420/ /pubmed/35630971 http://dx.doi.org/10.3390/nano12101750 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Su, Zih-Chun
Li, Yu-Hao
Lin, Ching-Fuh
Mid-Infrared Response from Cr/n-Si Schottky Junction with an Ultra-Thin Cr Metal
title Mid-Infrared Response from Cr/n-Si Schottky Junction with an Ultra-Thin Cr Metal
title_full Mid-Infrared Response from Cr/n-Si Schottky Junction with an Ultra-Thin Cr Metal
title_fullStr Mid-Infrared Response from Cr/n-Si Schottky Junction with an Ultra-Thin Cr Metal
title_full_unstemmed Mid-Infrared Response from Cr/n-Si Schottky Junction with an Ultra-Thin Cr Metal
title_short Mid-Infrared Response from Cr/n-Si Schottky Junction with an Ultra-Thin Cr Metal
title_sort mid-infrared response from cr/n-si schottky junction with an ultra-thin cr metal
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9143420/
https://www.ncbi.nlm.nih.gov/pubmed/35630971
http://dx.doi.org/10.3390/nano12101750
work_keys_str_mv AT suzihchun midinfraredresponsefromcrnsischottkyjunctionwithanultrathincrmetal
AT liyuhao midinfraredresponsefromcrnsischottkyjunctionwithanultrathincrmetal
AT linchingfuh midinfraredresponsefromcrnsischottkyjunctionwithanultrathincrmetal