Cargando…
Research on Deep Learning Method and Optimization of Vibration Characteristics of Rotating Equipment
CNN extracts the signal characteristics layer by layer through the local perception of convolution kernel, but the rotation speed and sampling frequency of the vibration signal of rotating equipment are not the same. Extracting different signal features with a fixed convolution kernel will affect th...
Autores principales: | Zhu, Xiaoxun, Liu, Baoping, Li, Zhentao, Lin, Jiawei, Gao, Xiaoxia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9143477/ https://www.ncbi.nlm.nih.gov/pubmed/35632102 http://dx.doi.org/10.3390/s22103693 |
Ejemplares similares
-
A Deep Learning Model with Signal Decomposition and Informer Network for Equipment Vibration Trend Prediction
por: Wang, Huiyun, et al.
Publicado: (2023) -
Research on Mechanical Equipment Fault Diagnosis Method Based on Deep Learning and Information Fusion
por: Jiang, Dongnian, et al.
Publicado: (2023) -
Multi-Sensor Vibration Signal Based Three-Stage Fault Prediction for Rotating Mechanical Equipment
por: Peng, Huaqing, et al.
Publicado: (2022) -
Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning
por: Li, Chuan, et al.
Publicado: (2016) -
Mechanical vibrations: applications to equipment
por: Benslama, Malek, et al.
Publicado: (2017)