Cargando…
MegaD: Deep Learning for Rapid and Accurate Disease Status Prediction of Metagenomic Samples
The diversity within different microbiome communities that drive biogeochemical processes influences many different phenotypes. Analyses of these communities and their diversity by countless microbiome projects have revealed an important role of metagenomics in understanding the complex relation bet...
Autores principales: | Mreyoud, Yassin, Song, Myoungkyu, Lim, Jihun, Ahn, Tae-Hyuk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9143510/ https://www.ncbi.nlm.nih.gov/pubmed/35629336 http://dx.doi.org/10.3390/life12050669 |
Ejemplares similares
-
MegaR: an interactive R package for rapid sample classification and phenotype prediction using metagenome profiles and machine learning
por: Dhungel, Eliza, et al.
Publicado: (2021) -
MegaPath: sensitive and rapid pathogen detection using metagenomic NGS data
por: Leung, Chi-Ming, et al.
Publicado: (2020) -
MegaGTA: a sensitive and accurate metagenomic gene-targeted assembler using iterative de Bruijn graphs
por: Li, Dinghua, et al.
Publicado: (2017) -
Using Apache Spark on genome assembly for scalable overlap-graph reduction
por: Paul, Alexander J., et al.
Publicado: (2019) -
Census-based rapid and accurate metagenome taxonomic profiling
por: Shamsaddini, Amirhossein, et al.
Publicado: (2014)