Cargando…
Intrusion Detection in Internet of Things Systems: A Review on Design Approaches Leveraging Multi-Access Edge Computing, Machine Learning, and Datasets
The explosive growth of the Internet of Things (IoT) applications has imposed a dramatic increase of network data and placed a high computation complexity across various connected devices. The IoT devices capture valuable information, which allows the industries or individual users to make critical...
Autores principales: | Gyamfi, Eric, Jurcut, Anca |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9143513/ https://www.ncbi.nlm.nih.gov/pubmed/35632153 http://dx.doi.org/10.3390/s22103744 |
Ejemplares similares
-
Satellite Edge Computing for the Internet of Things in Aerospace
por: Wang, Yuxuan, et al.
Publicado: (2019) -
A Machine Learning Based Intrusion Detection System for Mobile Internet of Things
por: Amouri, Amar, et al.
Publicado: (2020) -
Contextualized Design of IoT (Internet of Things) Finance for Edge Artificial Intelligence Computing
por: Guo, Yixuan
Publicado: (2022) -
Trustability for Resilient Internet of Things Services on 5G Multiple Access Edge Cloud Computing
por: Uslu, Suleyman, et al.
Publicado: (2022) -
Machine Learning Computing Migration and Management Based on Edge Computing of Multiple Data Sources in the Internet of Things
por: Yin, Yudong
Publicado: (2022)