Cargando…
Transcriptional Profiles Elucidate Differential Host Responses to Infection with Cryptococcus neoformans and Cryptococcus gattii
Many aspects of the host response to invasive cryptococcal infections remain poorly understood. In order to explore the pathobiology of infection with common clinical strains, we infected BALB/cJ mice with Cryptococcus neoformans, Cryptococcus gattii, or sham control, and assayed host transcriptomic...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9143552/ https://www.ncbi.nlm.nih.gov/pubmed/35628686 http://dx.doi.org/10.3390/jof8050430 |
Sumario: | Many aspects of the host response to invasive cryptococcal infections remain poorly understood. In order to explore the pathobiology of infection with common clinical strains, we infected BALB/cJ mice with Cryptococcus neoformans, Cryptococcus gattii, or sham control, and assayed host transcriptomic responses in peripheral blood. Infection with C. neoformans resulted in markedly greater fungal burden in the CNS than C. gattii, as well as slightly higher fungal burden in the lungs. A total of 389 genes were significantly differentially expressed in response to C. neoformans infection, which mainly clustered into pathways driving immune function, including complement activation and TH2-skewed immune responses. C. neoformans infection demonstrated dramatic up-regulation of complement-driven genes and greater up-regulation of alternatively activated macrophage activity than seen with C gattii. A 27-gene classifier was built, capable of distinguishing cryptococcal infection from animals with bacterial infection due to Staphylococcus aureus with 94% sensitivity and 89% specificity. Top genes from the murine classifiers were also differentially expressed in human PBMCs following infection, suggesting cross-species relevance of these findings. The host response, as manifested in transcriptional profiles, informs our understanding of the pathophysiology of cryptococcal infection and demonstrates promise for contributing to development of novel diagnostic approaches. |
---|