Cargando…

Experimental Investigation of Grinding Force and Material Removal Mechanism of Laser-Structured Zirconia Ceramics

Zirconia is a high demanded structural ceramic with desirable mechanical, thermal, and chemical properties. Poor surface integrity and limited material removal rate caused by high cutting force and wheel wear are the main problems in ceramic grinding. In order to reduce the grinding force and enhanc...

Descripción completa

Detalles Bibliográficos
Autores principales: Pang, Jingzhu, Ji, Xia, Niu, Yan, Chen, Shaojun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9143623/
https://www.ncbi.nlm.nih.gov/pubmed/35630177
http://dx.doi.org/10.3390/mi13050710
Descripción
Sumario:Zirconia is a high demanded structural ceramic with desirable mechanical, thermal, and chemical properties. Poor surface integrity and limited material removal rate caused by high cutting force and wheel wear are the main problems in ceramic grinding. In order to reduce the grinding force and enhance the removal rate in grinding, zirconia ceramics are firstly ablated by laser and then be grinded. A nanosecond laser is used to ablate the surface of zirconia ceramic, the laser-ablated structures with micro pits and thermal microcracks are generated. With the input of subsequent grinding, the machinability of zirconia ceramic workpiece with laser-ablated structures changes. Grinding experiments are conducted to study the grinding force and the material remove of laser-structured zirconia ceramic. Results show that the grinding forces in tangential and normal direction are significantly reduced. Compared to the grinding surface without laser-structured, a damage-free grinding surface is obtained by laser assistance.