Cargando…

Deep Learning-Based Diagnosis of Alzheimer’s Disease

Alzheimer’s disease (AD), the most familiar type of dementia, is a severe concern in modern healthcare. Around 5.5 million people aged 65 and above have AD, and it is the sixth leading cause of mortality in the US. AD is an irreversible, degenerative brain disorder characterized by a loss of cogniti...

Descripción completa

Detalles Bibliográficos
Autores principales: Saleem, Tausifa Jan, Zahra, Syed Rameem, Wu, Fan, Alwakeel, Ahmed, Alwakeel, Mohammed, Jeribi, Fathe, Hijji, Mohammad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9143671/
https://www.ncbi.nlm.nih.gov/pubmed/35629237
http://dx.doi.org/10.3390/jpm12050815
Descripción
Sumario:Alzheimer’s disease (AD), the most familiar type of dementia, is a severe concern in modern healthcare. Around 5.5 million people aged 65 and above have AD, and it is the sixth leading cause of mortality in the US. AD is an irreversible, degenerative brain disorder characterized by a loss of cognitive function and has no proven cure. Deep learning techniques have gained popularity in recent years, particularly in the domains of natural language processing and computer vision. Since 2014, these techniques have begun to achieve substantial consideration in AD diagnosis research, and the number of papers published in this arena is rising drastically. Deep learning techniques have been reported to be more accurate for AD diagnosis in comparison to conventional machine learning models. Motivated to explore the potential of deep learning in AD diagnosis, this study reviews the current state-of-the-art in AD diagnosis using deep learning. We summarize the most recent trends and findings using a thorough literature review. The study also explores the different biomarkers and datasets for AD diagnosis. Even though deep learning has shown promise in AD diagnosis, there are still several challenges that need to be addressed.