Cargando…
Research on the Extraction of Hazard Sources along High-Speed Railways from High-Resolution Remote Sensing Images Based on TE-ResUNet
There are many potential hazard sources along high-speed railways that threaten the safety of railway operation. Traditional ground search methods are failing to meet the needs of safe and efficient investigation. In order to accurately and efficiently locate hazard sources along the high-speed rail...
Autores principales: | Pan, Xuran, Yang, Lina, Sun, Xu, Yao, Jingchuan, Guo, Jiliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9143839/ https://www.ncbi.nlm.nih.gov/pubmed/35632190 http://dx.doi.org/10.3390/s22103784 |
Ejemplares similares
-
Left Ventricle Segmentation in Cardiac MR Images via an Improved ResUnet
por: Xu, Shengzhou, et al.
Publicado: (2022) -
Zebrafish Embryo Vessel Segmentation Using a Novel Dual ResUNet Model
por: Zhang, Kun, et al.
Publicado: (2019) -
Artificial Intelligence for Automatic Measurement of Sagittal Vertical Axis Using ResUNet Framework
por: Weng, Chi-Hung, et al.
Publicado: (2019) -
Automating cell counting in fluorescent microscopy through deep learning with c-ResUnet
por: Morelli, Roberto, et al.
Publicado: (2021) -
Ore image segmentation method using U-Net and Res_Unet convolutional networks
por: Liu, Xiaobo, et al.
Publicado: (2020)