Cargando…
Investigating the Combination of Deep Learning for Channel Estimation and Power Optimization in a Non-Orthogonal Multiple Access System
In a non-orthogonal multiple access (NOMA) system, the successive interference cancellation (SIC) procedure is typically employed at the receiver side, where several user’s signals are decoded in a subsequent manner. Fading channels may disperse the transmitted signal and originate dependencies amon...
Autores principales: | Gaballa, Mohamed, Abbod, Maysam, Aldallal, Ammar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9143864/ https://www.ncbi.nlm.nih.gov/pubmed/35632075 http://dx.doi.org/10.3390/s22103666 |
Ejemplares similares
-
A Study on the Impact of Integrating Reinforcement Learning for Channel Prediction and Power Allocation Scheme in MISO-NOMA System
por: Gaballa, Mohamed, et al.
Publicado: (2023) -
Simplified Deep Reinforcement Learning Approach for Channel Prediction in Power Domain NOMA System
por: Gaballa, Mohamed, et al.
Publicado: (2023) -
Uplink Non-Orthogonal Multiple Access with Channel Estimation Errors for Internet of Things Applications
por: Rim, Minjoong, et al.
Publicado: (2019) -
Joint Power and Channel Allocation for Non-Orthogonal Multiple Access in 5G Networks and Beyond
por: Alghazali, Qusay, et al.
Publicado: (2023) -
Non-Orthogonal Multiple Access for Unicast and Multicast D2D: Channel Assignment, Power Allocation and Energy Efficiency
por: Hmila, Mariem, et al.
Publicado: (2021)