Cargando…
Facile Fabrication of Fluorine-Free, Anti-Icing, and Multifunctional Superhydrophobic Surface on Wood Substrates
Building superhydrophobic protective layers on the wood substrates is promising in terms of endowing them with multiple functions, including water-repellent, self-cleaning, anti-icing functions. In this study, multifunctional superhydrophobic wood was successfully fabricated by introducing SiO(2) so...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9143972/ https://www.ncbi.nlm.nih.gov/pubmed/35631836 http://dx.doi.org/10.3390/polym14101953 |
Sumario: | Building superhydrophobic protective layers on the wood substrates is promising in terms of endowing them with multiple functions, including water-repellent, self-cleaning, anti-icing functions. In this study, multifunctional superhydrophobic wood was successfully fabricated by introducing SiO(2) sol and superhydrophobic powder (PMHOS). The SiO(2) sol was prepared using tetraethoxysilane as a precursor and ethanol was used as the dispersant. The PMHOS was synthesized using poly(methylhydrogen)siloxane (PMHS) and ethanol. As a result, the obtained superhydrophobic wood had a water contact angle (WCA) of 156° and a sliding angle (SA) of 6° at room temperature. The obtained superhydrophobic wood exhibited excellent repellency toward common liquid (milk, soy sauce, juice, and coffee). The superhydrophobic layer on the wood surface also exhibited good durability after a series of mechanical damages, including finger wiping, tape peeling, knife scratching, and sandpaper abrasion. In addition, the obtained superhydrophobic wood showed excellent anti-icing properties. |
---|