Cargando…

Vitamin-D Deficiency and Supplementation Altered the Network of the Coronary Arteries in a Rodent Model—In Situ Video Microscopic Technique

The aim of our study was to identify whether vitamin-D deficiency (VDD) can alter the geometry of the coronary-resistance-artery system. Male Wistar rats were divided into vitamin-D-deficient (VD−, n = 10) and vitamin-D-supplemented (VD+, n = 8) groups. After eight weeks, branches and segments of th...

Descripción completa

Detalles Bibliográficos
Autores principales: Dalloul, Hicham, Hainzl, Tobias, Monori-Kiss, Anna, Hadjadj, Leila, Nádasy, György L., Török, Marianna, Várbíró, Szabolcs
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9144105/
https://www.ncbi.nlm.nih.gov/pubmed/35631182
http://dx.doi.org/10.3390/nu14102041
Descripción
Sumario:The aim of our study was to identify whether vitamin-D deficiency (VDD) can alter the geometry of the coronary-resistance-artery system. Male Wistar rats were divided into vitamin-D-deficient (VD−, n = 10) and vitamin-D-supplemented (VD+, n = 8) groups. After eight weeks, branches and segments of the left-anterior-descending-coronary-artery (LAD) network were analyzed by a video-microscopy technique. Segments were divided into 50 μm-long cylindrical ring units. VDD did not increase the number of morphological abnormalities. The number of segments did not differ between the groups (VD−: 210 and VD+: 224; pooled data of 8 networks). A larger lumen area of branches was found in VD+ group, while 1–4-order branches were lengthier in the VD− group. VD− rats had less rich coronary-resistance-artery networks in terms of 50 µm-long units. (VD−: 6365 vs. VD+: 6602; pooled data of 8 networks). VD+ animals were richer in the 100–350 µm outer diameter range, and VD− animals were richer in the 400–550 µm-diameter units. In VD− rats, 150–200 and 300 µm units were almost missing at higher flow distances from the orifice. Serum vitamin-D alterations caused by dietary changes can affect the geometry of the coronary-artery network, which may contribute to vitamin-D-dependent changes in cardiovascular mortality.