Cargando…
A Dynamic Calibration of Optical Fiber DTS Measurements Using PEST and Reference Thermometers
Temperature measurements are widely used in structural health monitoring. Optical fiber distributed temperature sensors (DTS) are developed, based on Raman spectroscopy, to measure temperature with relatively high accuracy and short temporal and spatial resolutions. DTS systems provide an extensive...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9144132/ https://www.ncbi.nlm.nih.gov/pubmed/35632299 http://dx.doi.org/10.3390/s22103890 |
_version_ | 1784715974274973696 |
---|---|
author | Ghafoori, Yaser Vidmar, Andrej Kryžanowski, Andrej |
author_facet | Ghafoori, Yaser Vidmar, Andrej Kryžanowski, Andrej |
author_sort | Ghafoori, Yaser |
collection | PubMed |
description | Temperature measurements are widely used in structural health monitoring. Optical fiber distributed temperature sensors (DTS) are developed, based on Raman spectroscopy, to measure temperature with relatively high accuracy and short temporal and spatial resolutions. DTS systems provide an extensive number of temperature measurements along the entire length of an optical fiber that can be extended to tens of kilometers. The efficiency of the temperature measurement strongly depends on the calibration of the DTS data. Although DTS systems internally calibrate the data, manual calibration techniques were developed to achieve more accurate results. Manual calibration employs reference sections or points with known temperatures and the DTS scattering data to estimate the calibration parameters and calculate temperature along the optical fiber. In some applications, manual calibration is subjected to some shortages, based on the proposed fiber installation configuration and continuity of calibration. In this article, the manual calibration approach was developed using the model-independent Parameters Estimation (PEST), together with the external temperature sensors as references for the DTS system. The proposed method improved manual calibration in terms of installation configuration, continuity of dynamic calibration, and estimation of the calibration parameters. |
format | Online Article Text |
id | pubmed-9144132 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91441322022-05-29 A Dynamic Calibration of Optical Fiber DTS Measurements Using PEST and Reference Thermometers Ghafoori, Yaser Vidmar, Andrej Kryžanowski, Andrej Sensors (Basel) Article Temperature measurements are widely used in structural health monitoring. Optical fiber distributed temperature sensors (DTS) are developed, based on Raman spectroscopy, to measure temperature with relatively high accuracy and short temporal and spatial resolutions. DTS systems provide an extensive number of temperature measurements along the entire length of an optical fiber that can be extended to tens of kilometers. The efficiency of the temperature measurement strongly depends on the calibration of the DTS data. Although DTS systems internally calibrate the data, manual calibration techniques were developed to achieve more accurate results. Manual calibration employs reference sections or points with known temperatures and the DTS scattering data to estimate the calibration parameters and calculate temperature along the optical fiber. In some applications, manual calibration is subjected to some shortages, based on the proposed fiber installation configuration and continuity of calibration. In this article, the manual calibration approach was developed using the model-independent Parameters Estimation (PEST), together with the external temperature sensors as references for the DTS system. The proposed method improved manual calibration in terms of installation configuration, continuity of dynamic calibration, and estimation of the calibration parameters. MDPI 2022-05-20 /pmc/articles/PMC9144132/ /pubmed/35632299 http://dx.doi.org/10.3390/s22103890 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ghafoori, Yaser Vidmar, Andrej Kryžanowski, Andrej A Dynamic Calibration of Optical Fiber DTS Measurements Using PEST and Reference Thermometers |
title | A Dynamic Calibration of Optical Fiber DTS Measurements Using PEST and Reference Thermometers |
title_full | A Dynamic Calibration of Optical Fiber DTS Measurements Using PEST and Reference Thermometers |
title_fullStr | A Dynamic Calibration of Optical Fiber DTS Measurements Using PEST and Reference Thermometers |
title_full_unstemmed | A Dynamic Calibration of Optical Fiber DTS Measurements Using PEST and Reference Thermometers |
title_short | A Dynamic Calibration of Optical Fiber DTS Measurements Using PEST and Reference Thermometers |
title_sort | dynamic calibration of optical fiber dts measurements using pest and reference thermometers |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9144132/ https://www.ncbi.nlm.nih.gov/pubmed/35632299 http://dx.doi.org/10.3390/s22103890 |
work_keys_str_mv | AT ghafooriyaser adynamiccalibrationofopticalfiberdtsmeasurementsusingpestandreferencethermometers AT vidmarandrej adynamiccalibrationofopticalfiberdtsmeasurementsusingpestandreferencethermometers AT kryzanowskiandrej adynamiccalibrationofopticalfiberdtsmeasurementsusingpestandreferencethermometers AT ghafooriyaser dynamiccalibrationofopticalfiberdtsmeasurementsusingpestandreferencethermometers AT vidmarandrej dynamiccalibrationofopticalfiberdtsmeasurementsusingpestandreferencethermometers AT kryzanowskiandrej dynamiccalibrationofopticalfiberdtsmeasurementsusingpestandreferencethermometers |