Cargando…
Synthesis, Spectroscopic, Structural and Molecular Docking Studies of Some New Nano-Sized Ferrocene-Based Imine Chelates as Antimicrobial and Anticancer Agents
The newly synthesized organometallic acetyl ferrocene imine ligand (HL) was obtained by the direct combination of 2-acetyl ferrocene with 2-aminothiophenol. The electronic and molecular structure of acetyl ferrocene imine ligand (HL) was refined theoretically and the chemical quantum factors were co...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9144163/ https://www.ncbi.nlm.nih.gov/pubmed/35629702 http://dx.doi.org/10.3390/ma15103678 |
_version_ | 1784715981758660608 |
---|---|
author | Khalaf, Mai M. El-Lateef, Hany M. Abd Alhadhrami, Abdulrahman Sayed, Fatma N. Mohamed, Gehad G. Gouda, Mohamed Shaaban, Saad Abu-Dief, Ahmed M. |
author_facet | Khalaf, Mai M. El-Lateef, Hany M. Abd Alhadhrami, Abdulrahman Sayed, Fatma N. Mohamed, Gehad G. Gouda, Mohamed Shaaban, Saad Abu-Dief, Ahmed M. |
author_sort | Khalaf, Mai M. |
collection | PubMed |
description | The newly synthesized organometallic acetyl ferrocene imine ligand (HL) was obtained by the direct combination of 2-acetyl ferrocene with 2-aminothiophenol. The electronic and molecular structure of acetyl ferrocene imine ligand (HL) was refined theoretically and the chemical quantum factors were computed. Complexes of the acetyl ferrocene imine ligand with metal(II)/(III) ions (Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II)) were fabricated. They were inspected by thermal (DTG/TG), spectroscopic techniques (FT-IR, (1)H NMR, mass, UV–Vis), molar conductivity, and CHNClM to explicate their structures. Studies using scanning electron microscope (SEM) were conducted on the free acetyl ferrocene imine ligand and its Cd(II) chelate to confirm their nano-structure. To collect an idea about the effect of metal ions on anti-pathogenic properties upon chelation, the newly synthesized acetyl ferrocene imine ligand and some of its metal chelates were tested against a variety of microorganisms, including Bacillus subtilis, Staphylococcus aureus, Salmonella typhimurium, Escherichia coli, Aspergillus fumigatus, and Candida albicans. The ligand and its metal chelate were tested for cytotoxic activity in human cancer (MCF-7 cell viability) and human melanocyte cell line HBF4. It was discovered that the Cd(II) chelate had the lowest IC(50) of the three and thus had the prior activity. Molecular docking was utilized to investigate the interaction of acetyl ferrocene imine ligand (HL) with the receptors of the vascular endothelial growth factor receptor VEGFR (PDB ID: 1Y6a), human Topo IIA-bound G-segment DNA crystal structure (PDB ID: 2RGR), and Escherichia coli crystal structure (PDB ID: 3T88). |
format | Online Article Text |
id | pubmed-9144163 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91441632022-05-29 Synthesis, Spectroscopic, Structural and Molecular Docking Studies of Some New Nano-Sized Ferrocene-Based Imine Chelates as Antimicrobial and Anticancer Agents Khalaf, Mai M. El-Lateef, Hany M. Abd Alhadhrami, Abdulrahman Sayed, Fatma N. Mohamed, Gehad G. Gouda, Mohamed Shaaban, Saad Abu-Dief, Ahmed M. Materials (Basel) Article The newly synthesized organometallic acetyl ferrocene imine ligand (HL) was obtained by the direct combination of 2-acetyl ferrocene with 2-aminothiophenol. The electronic and molecular structure of acetyl ferrocene imine ligand (HL) was refined theoretically and the chemical quantum factors were computed. Complexes of the acetyl ferrocene imine ligand with metal(II)/(III) ions (Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II)) were fabricated. They were inspected by thermal (DTG/TG), spectroscopic techniques (FT-IR, (1)H NMR, mass, UV–Vis), molar conductivity, and CHNClM to explicate their structures. Studies using scanning electron microscope (SEM) were conducted on the free acetyl ferrocene imine ligand and its Cd(II) chelate to confirm their nano-structure. To collect an idea about the effect of metal ions on anti-pathogenic properties upon chelation, the newly synthesized acetyl ferrocene imine ligand and some of its metal chelates were tested against a variety of microorganisms, including Bacillus subtilis, Staphylococcus aureus, Salmonella typhimurium, Escherichia coli, Aspergillus fumigatus, and Candida albicans. The ligand and its metal chelate were tested for cytotoxic activity in human cancer (MCF-7 cell viability) and human melanocyte cell line HBF4. It was discovered that the Cd(II) chelate had the lowest IC(50) of the three and thus had the prior activity. Molecular docking was utilized to investigate the interaction of acetyl ferrocene imine ligand (HL) with the receptors of the vascular endothelial growth factor receptor VEGFR (PDB ID: 1Y6a), human Topo IIA-bound G-segment DNA crystal structure (PDB ID: 2RGR), and Escherichia coli crystal structure (PDB ID: 3T88). MDPI 2022-05-20 /pmc/articles/PMC9144163/ /pubmed/35629702 http://dx.doi.org/10.3390/ma15103678 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Khalaf, Mai M. El-Lateef, Hany M. Abd Alhadhrami, Abdulrahman Sayed, Fatma N. Mohamed, Gehad G. Gouda, Mohamed Shaaban, Saad Abu-Dief, Ahmed M. Synthesis, Spectroscopic, Structural and Molecular Docking Studies of Some New Nano-Sized Ferrocene-Based Imine Chelates as Antimicrobial and Anticancer Agents |
title | Synthesis, Spectroscopic, Structural and Molecular Docking Studies of Some New Nano-Sized Ferrocene-Based Imine Chelates as Antimicrobial and Anticancer Agents |
title_full | Synthesis, Spectroscopic, Structural and Molecular Docking Studies of Some New Nano-Sized Ferrocene-Based Imine Chelates as Antimicrobial and Anticancer Agents |
title_fullStr | Synthesis, Spectroscopic, Structural and Molecular Docking Studies of Some New Nano-Sized Ferrocene-Based Imine Chelates as Antimicrobial and Anticancer Agents |
title_full_unstemmed | Synthesis, Spectroscopic, Structural and Molecular Docking Studies of Some New Nano-Sized Ferrocene-Based Imine Chelates as Antimicrobial and Anticancer Agents |
title_short | Synthesis, Spectroscopic, Structural and Molecular Docking Studies of Some New Nano-Sized Ferrocene-Based Imine Chelates as Antimicrobial and Anticancer Agents |
title_sort | synthesis, spectroscopic, structural and molecular docking studies of some new nano-sized ferrocene-based imine chelates as antimicrobial and anticancer agents |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9144163/ https://www.ncbi.nlm.nih.gov/pubmed/35629702 http://dx.doi.org/10.3390/ma15103678 |
work_keys_str_mv | AT khalafmaim synthesisspectroscopicstructuralandmoleculardockingstudiesofsomenewnanosizedferrocenebasediminechelatesasantimicrobialandanticanceragents AT ellateefhanymabd synthesisspectroscopicstructuralandmoleculardockingstudiesofsomenewnanosizedferrocenebasediminechelatesasantimicrobialandanticanceragents AT alhadhramiabdulrahman synthesisspectroscopicstructuralandmoleculardockingstudiesofsomenewnanosizedferrocenebasediminechelatesasantimicrobialandanticanceragents AT sayedfatman synthesisspectroscopicstructuralandmoleculardockingstudiesofsomenewnanosizedferrocenebasediminechelatesasantimicrobialandanticanceragents AT mohamedgehadg synthesisspectroscopicstructuralandmoleculardockingstudiesofsomenewnanosizedferrocenebasediminechelatesasantimicrobialandanticanceragents AT goudamohamed synthesisspectroscopicstructuralandmoleculardockingstudiesofsomenewnanosizedferrocenebasediminechelatesasantimicrobialandanticanceragents AT shaabansaad synthesisspectroscopicstructuralandmoleculardockingstudiesofsomenewnanosizedferrocenebasediminechelatesasantimicrobialandanticanceragents AT abudiefahmedm synthesisspectroscopicstructuralandmoleculardockingstudiesofsomenewnanosizedferrocenebasediminechelatesasantimicrobialandanticanceragents |