Cargando…
Neuroprotective Effects of Cranberry Juice Treatment in a Rat Model of Parkinson’s Disease
Rich in polyphenols, cranberry juice (CJ) with high antioxidant activity is believed to contribute to various health benefits. However, our knowledge of the neuroprotective potential of cranberries is limited. Previously, we have demonstrated that CJ treatment controls oxidative stress in several or...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9144186/ https://www.ncbi.nlm.nih.gov/pubmed/35631155 http://dx.doi.org/10.3390/nu14102014 |
Sumario: | Rich in polyphenols, cranberry juice (CJ) with high antioxidant activity is believed to contribute to various health benefits. However, our knowledge of the neuroprotective potential of cranberries is limited. Previously, we have demonstrated that CJ treatment controls oxidative stress in several organs, with the most evident effect in the brain. In this study, we examined the capability of CJ for protection against Parkinson’s disease (PD) in a rotenone (ROT) rat model. Wistar rats were administered with CJ in a dose of 500 mg/kg b.w./day (i.g.) and subcutaneously injected with ROT (1.3 mg/kg b.w./day). The experiment lasted 45 days, including 10 days pre-treatment with CJ and 35 days combined treatment with CJ and ROT. We quantified the expression of α-synuclein and apoptosis markers in the midbrain, performed microscopic examination, and assessed postural instability to evaluate the CJ neuroprotective effect. Our results indicate that the juice treatment provided neuroprotection, as evidenced by declined α-synuclein accumulation, Bax and cleaved/active caspase-9 expression, and normalized cytochrome c level that was accompanied by the enhancement of neuronal activity survival and improved postural instability. Importantly, we also found that long-term administration of CJ alone in a relatively high dose may exert a deleterious effect on cell survival in the midbrain. |
---|