Cargando…

Regulatory Networks of Flowering Genes in Angelica sinensis during Vernalization

Angelica sinensis is a low-temperature and long-day perennial herb that has been widely used for cardio-cerebrovascular diseases in recent years. In commercial cultivation, up to 40% of flowering decreases the officinal yield of roots and accumulation of bioactive compounds. Although the regulatory...

Descripción completa

Detalles Bibliográficos
Autores principales: Luo, Mimi, Liu, Xiaoxia, Su, Hongyan, Li, Meiling, Li, Mengfei, Wei, Jianhe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9144295/
https://www.ncbi.nlm.nih.gov/pubmed/35631780
http://dx.doi.org/10.3390/plants11101355
_version_ 1784716014079967232
author Luo, Mimi
Liu, Xiaoxia
Su, Hongyan
Li, Meiling
Li, Mengfei
Wei, Jianhe
author_facet Luo, Mimi
Liu, Xiaoxia
Su, Hongyan
Li, Meiling
Li, Mengfei
Wei, Jianhe
author_sort Luo, Mimi
collection PubMed
description Angelica sinensis is a low-temperature and long-day perennial herb that has been widely used for cardio-cerebrovascular diseases in recent years. In commercial cultivation, up to 40% of flowering decreases the officinal yield of roots and accumulation of bioactive compounds. Although the regulatory mechanism of flowering genes during the photoperiod has been revealed, the networks during vernalization have not been mapped. Here, transcriptomics profiles of A. sinensis with uncompleted (T1), completed (T2) and avoided vernalization (T3) were performed using RNA-seq, and genes expression was validated with qRT-PCR. A total of 61,241 isoforms were annotated on KEGG, KOG, Nr and Swiss-Prot databases; 4212 and 5301 differentially expressed genes (DEGs) were observed; and 151 and 155 genes involved in flowering were dug out at T2 vs. T1 and T3 vs. T1, respectively. According to functional annotation, 104 co-expressed genes were classified into six categories: FLC expression (22; e.g., VILs, FCA and FLK), sucrose metabolism (12; e.g., TPSs, SUS3 and SPSs), hormone response (18; e.g., GID1B, RAP2s and IAAs), circadian clock (2; i.e., ELF3 and COR27), downstream floral integrators and meristem identity (15; e.g., SOC1, AGL65 and SPLs) and cold response (35; e.g., PYLs, ERFs and CORs). The expression levels of candidate genes were almost consistent with FPKM values and changes in sugar and hormone contents. Based on their functions, four pathways that regulate flowering during vernalization were mapped, including the vernalization pathway, the autonomic pathway, the age pathway and the GA (hormone) pathway. This transcriptomic analysis provides new insights into the gene-regulatory networks of flowering in A. sinensis.
format Online
Article
Text
id pubmed-9144295
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-91442952022-05-29 Regulatory Networks of Flowering Genes in Angelica sinensis during Vernalization Luo, Mimi Liu, Xiaoxia Su, Hongyan Li, Meiling Li, Mengfei Wei, Jianhe Plants (Basel) Article Angelica sinensis is a low-temperature and long-day perennial herb that has been widely used for cardio-cerebrovascular diseases in recent years. In commercial cultivation, up to 40% of flowering decreases the officinal yield of roots and accumulation of bioactive compounds. Although the regulatory mechanism of flowering genes during the photoperiod has been revealed, the networks during vernalization have not been mapped. Here, transcriptomics profiles of A. sinensis with uncompleted (T1), completed (T2) and avoided vernalization (T3) were performed using RNA-seq, and genes expression was validated with qRT-PCR. A total of 61,241 isoforms were annotated on KEGG, KOG, Nr and Swiss-Prot databases; 4212 and 5301 differentially expressed genes (DEGs) were observed; and 151 and 155 genes involved in flowering were dug out at T2 vs. T1 and T3 vs. T1, respectively. According to functional annotation, 104 co-expressed genes were classified into six categories: FLC expression (22; e.g., VILs, FCA and FLK), sucrose metabolism (12; e.g., TPSs, SUS3 and SPSs), hormone response (18; e.g., GID1B, RAP2s and IAAs), circadian clock (2; i.e., ELF3 and COR27), downstream floral integrators and meristem identity (15; e.g., SOC1, AGL65 and SPLs) and cold response (35; e.g., PYLs, ERFs and CORs). The expression levels of candidate genes were almost consistent with FPKM values and changes in sugar and hormone contents. Based on their functions, four pathways that regulate flowering during vernalization were mapped, including the vernalization pathway, the autonomic pathway, the age pathway and the GA (hormone) pathway. This transcriptomic analysis provides new insights into the gene-regulatory networks of flowering in A. sinensis. MDPI 2022-05-19 /pmc/articles/PMC9144295/ /pubmed/35631780 http://dx.doi.org/10.3390/plants11101355 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Luo, Mimi
Liu, Xiaoxia
Su, Hongyan
Li, Meiling
Li, Mengfei
Wei, Jianhe
Regulatory Networks of Flowering Genes in Angelica sinensis during Vernalization
title Regulatory Networks of Flowering Genes in Angelica sinensis during Vernalization
title_full Regulatory Networks of Flowering Genes in Angelica sinensis during Vernalization
title_fullStr Regulatory Networks of Flowering Genes in Angelica sinensis during Vernalization
title_full_unstemmed Regulatory Networks of Flowering Genes in Angelica sinensis during Vernalization
title_short Regulatory Networks of Flowering Genes in Angelica sinensis during Vernalization
title_sort regulatory networks of flowering genes in angelica sinensis during vernalization
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9144295/
https://www.ncbi.nlm.nih.gov/pubmed/35631780
http://dx.doi.org/10.3390/plants11101355
work_keys_str_mv AT luomimi regulatorynetworksoffloweringgenesinangelicasinensisduringvernalization
AT liuxiaoxia regulatorynetworksoffloweringgenesinangelicasinensisduringvernalization
AT suhongyan regulatorynetworksoffloweringgenesinangelicasinensisduringvernalization
AT limeiling regulatorynetworksoffloweringgenesinangelicasinensisduringvernalization
AT limengfei regulatorynetworksoffloweringgenesinangelicasinensisduringvernalization
AT weijianhe regulatorynetworksoffloweringgenesinangelicasinensisduringvernalization