Cargando…
Prediction of Deformation-Induced Martensite Start Temperature by Convolutional Neural Network with Dual Mode Features
Various models were established for deformation-induced martensite start temperature prediction over decades. However, most of them are empirical or considering limited factors. In this research, a dual mode database for medium Mn steels was established and a convolutional neural network model, whic...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9144313/ https://www.ncbi.nlm.nih.gov/pubmed/35629523 http://dx.doi.org/10.3390/ma15103495 |
Sumario: | Various models were established for deformation-induced martensite start temperature prediction over decades. However, most of them are empirical or considering limited factors. In this research, a dual mode database for medium Mn steels was established and a convolutional neural network model, which considered all composition, critical processing information and microstructure images as inputs, was built for [Formula: see text] prediction. By comprehensively considering composition, processing and microstructure factors, this model was more rational and much more accurate than traditional thermodynamic models. Also, by the full use of images information, this model has stronger ability to overcome overfitting compared with various traditional machine learning models. This framework provides inspiration for the similar data analysis issues with small sample datasets but different data modes in the field of materials science. |
---|