Cargando…
Prediction of Deformation-Induced Martensite Start Temperature by Convolutional Neural Network with Dual Mode Features
Various models were established for deformation-induced martensite start temperature prediction over decades. However, most of them are empirical or considering limited factors. In this research, a dual mode database for medium Mn steels was established and a convolutional neural network model, whic...
Autores principales: | Wang, Chenchong, Ren, Da, Li, Yong, Wang, Xu, Xu, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9144313/ https://www.ncbi.nlm.nih.gov/pubmed/35629523 http://dx.doi.org/10.3390/ma15103495 |
Ejemplares similares
-
Martensite Start Temperature Prediction through a Deep Learning Strategy Using Both Microstructure Images and Composition Data
por: Yang, Zenan, et al.
Publicado: (2023) -
Local Maxima in Martensite Start Temperatures in the Transition Region between Lath and Plate Martensite in Fe-Ni Alloys
por: Thome, Pascal, et al.
Publicado: (2023) -
Quantum-mechanical analysis of effect of alloying elements on ε-martensite start temperature of steels
por: Jang, J. H., et al.
Publicado: (2017) -
The Features of Martensitic Transformation in 12% Chromium Ferritic–Martensitic Steels
por: Bazaleeva, Kseniya, et al.
Publicado: (2021) -
Effect of Austempering Processes on the Tensile Properties and the Work-Hardening Behavior of Austempered Bainitic Steels Below the Martensite Start Temperature
por: Wang, Kun, et al.
Publicado: (2023)