Cargando…
Generation of Ince–Gaussian Beams Using Azocarbazole Polymer CGH
Ince–Gaussian beams, defined as a solution to a wave equation in elliptical coordinates, have shown great advantages in applications such as optical communication, optical trapping and optical computation. However, to ingress these applications, a compact and scalable method for generating these bea...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9144365/ https://www.ncbi.nlm.nih.gov/pubmed/35621908 http://dx.doi.org/10.3390/jimaging8050144 |
Sumario: | Ince–Gaussian beams, defined as a solution to a wave equation in elliptical coordinates, have shown great advantages in applications such as optical communication, optical trapping and optical computation. However, to ingress these applications, a compact and scalable method for generating these beams is required. Here, we present a simple method that satisfies the above requirement, and is capable of generating arbitrary Ince–Gaussian beams and their superposed states through a computer-generated hologram of size 1 mm(2), fabricated on an azocarbazole polymer film. Other structural beams that can be derived from the Ince–Gaussian beam were also successfully generated by changing the elliptical parameters of the Ince–Gaussian beam. The orthogonality relations between different Ince–Gaussian modes were investigated in order to verify applicability in an optical communication regime. The complete python source code for computing the Ince–Gaussian beams and their holograms are also provided. |
---|