Cargando…
Applying Machine Learning to Finger Movements Using Electromyography and Visualization in Opensim
Electromyographic signals have been used with low-degree-of-freedom prostheses, and recently with multifunctional prostheses. Currently, they are also being used as inputs in the human–computer interface that controls interaction through hand gestures. Although there is a gap between academic public...
Autores principales: | Amezquita-Garcia, Jose, Bravo-Zanoguera, Miguel, Gonzalez-Navarro, Felix F., Lopez-Avitia, Roberto, Reyna, M. A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9144461/ https://www.ncbi.nlm.nih.gov/pubmed/35632146 http://dx.doi.org/10.3390/s22103737 |
Ejemplares similares
-
Finger Muscle Attachments for an OpenSim Upper-Extremity Model
por: Lee, Jong Hwa, et al.
Publicado: (2015) -
Fabricating a Portable ECG Device Using AD823X Analog Front-End Microchips and Open-Source Development Validation †
por: Bravo-Zanoguera, Miguel, et al.
Publicado: (2020) -
Correction: Finger Muscle Attachments for an OpenSim Upper-Extremity Model
por: Lee, Jong Hwa, et al.
Publicado: (2022) -
ECG Standards and Formats for Interoperability between mHealth and Healthcare Information Systems: A Scoping Review
por: Cuevas-González, Daniel, et al.
Publicado: (2022) -
Generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB
por: Lee, Leng-Feng, et al.
Publicado: (2016)