Cargando…
The Small Molecule GAL-201 Efficiently Detoxifies Soluble Amyloid β Oligomers: New Approach towards Oral Disease-Modifying Treatment of Alzheimer’s Disease
Soluble amyloid β (Aβ) oligomers have been shown to be highly toxic to neurons and are considered to be a major cause of the neurodegeneration underlying Alzheimer’s disease (AD). That makes soluble Aβ oligomers a promising drug target. In addition to eliminating these toxic species from the patient...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9144469/ https://www.ncbi.nlm.nih.gov/pubmed/35628602 http://dx.doi.org/10.3390/ijms23105794 |
_version_ | 1784716055736745984 |
---|---|
author | Russ, Hermann Mazzanti, Michele Parsons, Chris Riemann, Katrin Gebauer, Alexander Rammes, Gerhard |
author_facet | Russ, Hermann Mazzanti, Michele Parsons, Chris Riemann, Katrin Gebauer, Alexander Rammes, Gerhard |
author_sort | Russ, Hermann |
collection | PubMed |
description | Soluble amyloid β (Aβ) oligomers have been shown to be highly toxic to neurons and are considered to be a major cause of the neurodegeneration underlying Alzheimer’s disease (AD). That makes soluble Aβ oligomers a promising drug target. In addition to eliminating these toxic species from the patients’ brain with antibody-based drugs, a new class of drugs is emerging, namely Aβ aggregation inhibitors or modulators, which aim to stop the formation of toxic Aβ oligomers at the source. Here, pharmacological data of the novel Aβ aggregation modulator GAL-201 are presented. This small molecule (288.34 g/mol) exhibits high binding affinity to misfolded Aβ(1-42) monomers (K(D) = 2.5 ± 0.6 nM). Pharmacokinetic studies in rats using brain microdialysis are supportive of its oral bioavailability. The Aβ oligomer detoxifying potential of GAL-201 has been demonstrated by means of single cell recordings in isolated hippocampal neurons (perforated patch experiments) as well as in vitro and in vivo extracellular monitoring of long-term potentiation (LTP, in rat transverse hippocampal slices), a cellular correlate for synaptic plasticity. Upon preincubation, GAL-201 efficiently prevented the detrimental effect on LTP mediated by Aβ(1-42) oligomers. Furthermore, the potential to completely reverse an already established neurotoxic process could also be demonstrated. Of particular note in this context is the self-propagating detoxification potential of GAL-201, leading to a neutralization of Aβ oligomer toxicity even if GAL-201 has been stepwise removed from the medium (serial dilution), likely due to prion-like conformational changes in Aβ(1-42) monomer aggregates (trigger effect). The authors conclude that the data presented strongly support the further development of GAL-201 as a novel, orally available AD treatment with potentially superior clinical profile. |
format | Online Article Text |
id | pubmed-9144469 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91444692022-05-29 The Small Molecule GAL-201 Efficiently Detoxifies Soluble Amyloid β Oligomers: New Approach towards Oral Disease-Modifying Treatment of Alzheimer’s Disease Russ, Hermann Mazzanti, Michele Parsons, Chris Riemann, Katrin Gebauer, Alexander Rammes, Gerhard Int J Mol Sci Article Soluble amyloid β (Aβ) oligomers have been shown to be highly toxic to neurons and are considered to be a major cause of the neurodegeneration underlying Alzheimer’s disease (AD). That makes soluble Aβ oligomers a promising drug target. In addition to eliminating these toxic species from the patients’ brain with antibody-based drugs, a new class of drugs is emerging, namely Aβ aggregation inhibitors or modulators, which aim to stop the formation of toxic Aβ oligomers at the source. Here, pharmacological data of the novel Aβ aggregation modulator GAL-201 are presented. This small molecule (288.34 g/mol) exhibits high binding affinity to misfolded Aβ(1-42) monomers (K(D) = 2.5 ± 0.6 nM). Pharmacokinetic studies in rats using brain microdialysis are supportive of its oral bioavailability. The Aβ oligomer detoxifying potential of GAL-201 has been demonstrated by means of single cell recordings in isolated hippocampal neurons (perforated patch experiments) as well as in vitro and in vivo extracellular monitoring of long-term potentiation (LTP, in rat transverse hippocampal slices), a cellular correlate for synaptic plasticity. Upon preincubation, GAL-201 efficiently prevented the detrimental effect on LTP mediated by Aβ(1-42) oligomers. Furthermore, the potential to completely reverse an already established neurotoxic process could also be demonstrated. Of particular note in this context is the self-propagating detoxification potential of GAL-201, leading to a neutralization of Aβ oligomer toxicity even if GAL-201 has been stepwise removed from the medium (serial dilution), likely due to prion-like conformational changes in Aβ(1-42) monomer aggregates (trigger effect). The authors conclude that the data presented strongly support the further development of GAL-201 as a novel, orally available AD treatment with potentially superior clinical profile. MDPI 2022-05-21 /pmc/articles/PMC9144469/ /pubmed/35628602 http://dx.doi.org/10.3390/ijms23105794 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Russ, Hermann Mazzanti, Michele Parsons, Chris Riemann, Katrin Gebauer, Alexander Rammes, Gerhard The Small Molecule GAL-201 Efficiently Detoxifies Soluble Amyloid β Oligomers: New Approach towards Oral Disease-Modifying Treatment of Alzheimer’s Disease |
title | The Small Molecule GAL-201 Efficiently Detoxifies Soluble Amyloid β Oligomers: New Approach towards Oral Disease-Modifying Treatment of Alzheimer’s Disease |
title_full | The Small Molecule GAL-201 Efficiently Detoxifies Soluble Amyloid β Oligomers: New Approach towards Oral Disease-Modifying Treatment of Alzheimer’s Disease |
title_fullStr | The Small Molecule GAL-201 Efficiently Detoxifies Soluble Amyloid β Oligomers: New Approach towards Oral Disease-Modifying Treatment of Alzheimer’s Disease |
title_full_unstemmed | The Small Molecule GAL-201 Efficiently Detoxifies Soluble Amyloid β Oligomers: New Approach towards Oral Disease-Modifying Treatment of Alzheimer’s Disease |
title_short | The Small Molecule GAL-201 Efficiently Detoxifies Soluble Amyloid β Oligomers: New Approach towards Oral Disease-Modifying Treatment of Alzheimer’s Disease |
title_sort | small molecule gal-201 efficiently detoxifies soluble amyloid β oligomers: new approach towards oral disease-modifying treatment of alzheimer’s disease |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9144469/ https://www.ncbi.nlm.nih.gov/pubmed/35628602 http://dx.doi.org/10.3390/ijms23105794 |
work_keys_str_mv | AT russhermann thesmallmoleculegal201efficientlydetoxifiessolubleamyloidboligomersnewapproachtowardsoraldiseasemodifyingtreatmentofalzheimersdisease AT mazzantimichele thesmallmoleculegal201efficientlydetoxifiessolubleamyloidboligomersnewapproachtowardsoraldiseasemodifyingtreatmentofalzheimersdisease AT parsonschris thesmallmoleculegal201efficientlydetoxifiessolubleamyloidboligomersnewapproachtowardsoraldiseasemodifyingtreatmentofalzheimersdisease AT riemannkatrin thesmallmoleculegal201efficientlydetoxifiessolubleamyloidboligomersnewapproachtowardsoraldiseasemodifyingtreatmentofalzheimersdisease AT gebaueralexander thesmallmoleculegal201efficientlydetoxifiessolubleamyloidboligomersnewapproachtowardsoraldiseasemodifyingtreatmentofalzheimersdisease AT rammesgerhard thesmallmoleculegal201efficientlydetoxifiessolubleamyloidboligomersnewapproachtowardsoraldiseasemodifyingtreatmentofalzheimersdisease AT russhermann smallmoleculegal201efficientlydetoxifiessolubleamyloidboligomersnewapproachtowardsoraldiseasemodifyingtreatmentofalzheimersdisease AT mazzantimichele smallmoleculegal201efficientlydetoxifiessolubleamyloidboligomersnewapproachtowardsoraldiseasemodifyingtreatmentofalzheimersdisease AT parsonschris smallmoleculegal201efficientlydetoxifiessolubleamyloidboligomersnewapproachtowardsoraldiseasemodifyingtreatmentofalzheimersdisease AT riemannkatrin smallmoleculegal201efficientlydetoxifiessolubleamyloidboligomersnewapproachtowardsoraldiseasemodifyingtreatmentofalzheimersdisease AT gebaueralexander smallmoleculegal201efficientlydetoxifiessolubleamyloidboligomersnewapproachtowardsoraldiseasemodifyingtreatmentofalzheimersdisease AT rammesgerhard smallmoleculegal201efficientlydetoxifiessolubleamyloidboligomersnewapproachtowardsoraldiseasemodifyingtreatmentofalzheimersdisease |