Cargando…
Integration of Deep Learning Network and Robot Arm System for Rim Defect Inspection Application
Automated inspection has proven to be the most effective approach to maintaining quality in industrial-scale manufacturing. This study employed the eye-in-hand architecture in conjunction with deep learning and convolutional neural networks to automate the detection of defects in forged aluminum rim...
Autores principales: | Mao, Wei-Lung, Chiu, Yu-Ying, Lin, Bing-Hong, Wang, Chun-Chi, Wu, Yi-Ting, You, Cheng-Yu, Chien, Ying-Ren |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9144540/ https://www.ncbi.nlm.nih.gov/pubmed/35632335 http://dx.doi.org/10.3390/s22103927 |
Ejemplares similares
-
Defect Inspection Techniques in SiC
por: Chen, Po-Chih, et al.
Publicado: (2022) -
A dual arms robotic platform control for navigation, inspection and telemanipulation
por: Di Castro, Mario, et al.
Publicado: (2018) -
Deep Convolutional Neural Network Optimization for Defect Detection in Fabric Inspection
por: Ho, Chao-Ching, et al.
Publicado: (2021) -
An Inspection Robot Prototype
por: Abbas, Mahmoud
Publicado: (2022) -
CMS Inspection Robot
por: Alshwaish, Aljoharh, et al.
Publicado: (2023)