Cargando…
An Attention-Guided Spatiotemporal Graph Convolutional Network for Sleep Stage Classification
Sleep staging has been widely used as an approach in sleep diagnoses at sleep clinics. Graph neural network (GNN)-based methods have been extensively applied for automatic sleep stage classifications with significant results. However, the existing GNN-based methods rely on a static adjacency matrix...
Autores principales: | Li, Menglei, Chen, Hongbo, Cheng, Zixue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9144567/ https://www.ncbi.nlm.nih.gov/pubmed/35629290 http://dx.doi.org/10.3390/life12050622 |
Ejemplares similares
-
Multi-Head Spatiotemporal Attention Graph Convolutional Network for Traffic Prediction
por: Oluwasanmi, Ariyo, et al.
Publicado: (2023) -
Pathological-Gait Recognition Using Spatiotemporal Graph Convolutional Networks and Attention Model
por: Kim, Jungi, et al.
Publicado: (2022) -
Convolution- and Attention-Based Neural Network for Automated Sleep Stage Classification
por: Zhu, Tianqi, et al.
Publicado: (2020) -
Spatiotemporal adaptive attention graph convolution network for city-level air quality prediction
por: Liu, Hexiang, et al.
Publicado: (2023) -
Multi-Layer Graph Attention Network for Sleep Stage Classification Based on EEG
por: Wang, Qi, et al.
Publicado: (2022)