Cargando…
Design of a Practical Metal-Made Cold Isostatic Pressing (CIP) Chamber Using Finite Element Analysis
The fast development of deep-ocean engineering equipment requires more deep-ocean pressure chambers (DOPCs) with a large inner diameter and ultra-high-pressure (UHP). Using the pre-stressed wire-wound (PSWW) concept, cold isostatic pressing (CIP) chambers have become a new concept of DOPCs, which ca...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9144625/ https://www.ncbi.nlm.nih.gov/pubmed/35629648 http://dx.doi.org/10.3390/ma15103621 |
_version_ | 1784716093815783424 |
---|---|
author | Song, Wentao Cui, Weicheng |
author_facet | Song, Wentao Cui, Weicheng |
author_sort | Song, Wentao |
collection | PubMed |
description | The fast development of deep-ocean engineering equipment requires more deep-ocean pressure chambers (DOPCs) with a large inner diameter and ultra-high-pressure (UHP). Using the pre-stressed wire-wound (PSWW) concept, cold isostatic pressing (CIP) chambers have become a new concept of DOPCs, which can provide 100% performance of materials in theory. This paper aims to provide a comprehensive design process for a practical metal-made CIP chamber. First, the generalized design equations are derived by considering the fact that the cylinder and wire have different Young’s moduli and Poisson’s ratios. Second, to verify the theory and the reliability of the CIP chamber, the authors proposed a series of FEA models based on ANSYS Mechanical, including a two-dimensional (2D) model with the thermal strain method (TSM) and a three-dimensional (3D) model with the direct method (DM). The relative errors of the pre-stress coefficient range from 0.17% to 5%. Finally, the crack growth path is predicted by using ANSYS’s Separating Morphing and Adaptive Remeshing Technology (SMART) algorithm, and the fatigue life is evaluated by using the unified fatigue life prediction (UFLP) method developed by the authors’ group. This paper provides a more valuable basis to the design of DOPCs as well as to the similar pressure vessels than the previous work. |
format | Online Article Text |
id | pubmed-9144625 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91446252022-05-29 Design of a Practical Metal-Made Cold Isostatic Pressing (CIP) Chamber Using Finite Element Analysis Song, Wentao Cui, Weicheng Materials (Basel) Article The fast development of deep-ocean engineering equipment requires more deep-ocean pressure chambers (DOPCs) with a large inner diameter and ultra-high-pressure (UHP). Using the pre-stressed wire-wound (PSWW) concept, cold isostatic pressing (CIP) chambers have become a new concept of DOPCs, which can provide 100% performance of materials in theory. This paper aims to provide a comprehensive design process for a practical metal-made CIP chamber. First, the generalized design equations are derived by considering the fact that the cylinder and wire have different Young’s moduli and Poisson’s ratios. Second, to verify the theory and the reliability of the CIP chamber, the authors proposed a series of FEA models based on ANSYS Mechanical, including a two-dimensional (2D) model with the thermal strain method (TSM) and a three-dimensional (3D) model with the direct method (DM). The relative errors of the pre-stress coefficient range from 0.17% to 5%. Finally, the crack growth path is predicted by using ANSYS’s Separating Morphing and Adaptive Remeshing Technology (SMART) algorithm, and the fatigue life is evaluated by using the unified fatigue life prediction (UFLP) method developed by the authors’ group. This paper provides a more valuable basis to the design of DOPCs as well as to the similar pressure vessels than the previous work. MDPI 2022-05-18 /pmc/articles/PMC9144625/ /pubmed/35629648 http://dx.doi.org/10.3390/ma15103621 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Song, Wentao Cui, Weicheng Design of a Practical Metal-Made Cold Isostatic Pressing (CIP) Chamber Using Finite Element Analysis |
title | Design of a Practical Metal-Made Cold Isostatic Pressing (CIP) Chamber Using Finite Element Analysis |
title_full | Design of a Practical Metal-Made Cold Isostatic Pressing (CIP) Chamber Using Finite Element Analysis |
title_fullStr | Design of a Practical Metal-Made Cold Isostatic Pressing (CIP) Chamber Using Finite Element Analysis |
title_full_unstemmed | Design of a Practical Metal-Made Cold Isostatic Pressing (CIP) Chamber Using Finite Element Analysis |
title_short | Design of a Practical Metal-Made Cold Isostatic Pressing (CIP) Chamber Using Finite Element Analysis |
title_sort | design of a practical metal-made cold isostatic pressing (cip) chamber using finite element analysis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9144625/ https://www.ncbi.nlm.nih.gov/pubmed/35629648 http://dx.doi.org/10.3390/ma15103621 |
work_keys_str_mv | AT songwentao designofapracticalmetalmadecoldisostaticpressingcipchamberusingfiniteelementanalysis AT cuiweicheng designofapracticalmetalmadecoldisostaticpressingcipchamberusingfiniteelementanalysis |