Cargando…
CSAC-Net: Fast Adaptive sEMG Recognition through Attention Convolution Network and Model-Agnostic Meta-Learning
Gesture recognition through surface electromyography (sEMG) provides a new method for the control algorithm of bionic limbs, which is a promising technology in the field of human–computer interaction. However, subject specificity of sEMG along with the offset of the electrode makes it challenging to...
Autores principales: | Fan, Xinchen, Zou, Lancheng, Liu, Ziwu, He, Yanru, Zou, Lian, Chi, Ruan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9144628/ https://www.ncbi.nlm.nih.gov/pubmed/35632069 http://dx.doi.org/10.3390/s22103661 |
Ejemplares similares
-
Improved Multi-Stream Convolutional Block Attention Module for sEMG-Based Gesture Recognition
por: Wang, Shudi, et al.
Publicado: (2022) -
LST-EMG-Net: Long short-term transformer feature fusion network for sEMG gesture recognition
por: Zhang, Wenli, et al.
Publicado: (2023) -
Voiceless Bangla vowel recognition using sEMG signal
por: Mostafa, S. S., et al.
Publicado: (2016) -
A novel attention-based hybrid CNN-RNN architecture for sEMG-based gesture recognition
por: Hu, Yu, et al.
Publicado: (2018) -
The Impact of Load Style Variation on Gait Recognition Based on sEMG Images Using a Convolutional Neural Network
por: Zhang, Xianfu, et al.
Publicado: (2021)