Cargando…
Facile Fabrication of N-Type Flexible CoSb(3-x)Te(x) Skutterudite/PEDOT:PSS Hybrid Thermoelectric Films
Alongiside the growing demand for wearable and implantable electronics, the development of flexible thermoelectric (FTE) materials holds great promise and has recently become a highly necessitated and efficient method for converting heat to electricity. Conductive polymers were widely used in previo...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9144647/ https://www.ncbi.nlm.nih.gov/pubmed/35631870 http://dx.doi.org/10.3390/polym14101986 |
Sumario: | Alongiside the growing demand for wearable and implantable electronics, the development of flexible thermoelectric (FTE) materials holds great promise and has recently become a highly necessitated and efficient method for converting heat to electricity. Conductive polymers were widely used in previous research; however, n-type polymers suffer from instability compared to the p-type polymers, which results in a deficiency in the n-type TE leg for FTE devices. The development of the n-type FTE is still at a relatively early stage with limited applicable materials, insufficient conversion efficiency, and issues such as an undesirably high cost or toxic element consumption. In this work, as a prototype, a flexible n-type rare-earth free skutterudite (CoSb(3))/poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS) binary thermoelectric film was fabricated based on ball-milled skutterudite via a facile top-down method, which is promising to be widely applicable to the hybridization of conventional bulk TE materials. The polymers bridge the separated thermoelectric particles and provide a conducting pathway for carriers, leading to an enhancement in electrical conductivity and a competitive Seebeck coefficient. The current work proposes a rational design towards FTE devices and provides a perspective for the exploration of conventional thermoelectric materials for wearable electronics. |
---|