Cargando…
The Technical Challenges for Applying Unsaturated Soil Sensors to Conduct Laboratory-Scale Seepage Experiments
Although many unsaturated soil experiments have successfully delivered positive outcomes, most studies just concisely illustrated sensor techniques, because their main objectives focused on bridging research gaps. Inexperienced research fellows might rarely follow up those techniques, so they could...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9144893/ https://www.ncbi.nlm.nih.gov/pubmed/35632138 http://dx.doi.org/10.3390/s22103724 |
_version_ | 1784716159381143552 |
---|---|
author | Yan, Guanxi Bore, Thierry Bhuyan, Habibullah Schlaeger, Stefan Scheuermann, Alexander |
author_facet | Yan, Guanxi Bore, Thierry Bhuyan, Habibullah Schlaeger, Stefan Scheuermann, Alexander |
author_sort | Yan, Guanxi |
collection | PubMed |
description | Although many unsaturated soil experiments have successfully delivered positive outcomes, most studies just concisely illustrated sensor techniques, because their main objectives focused on bridging research gaps. Inexperienced research fellows might rarely follow up those techniques, so they could encounter very trivial and skill-demanding difficulties, undermining the quality of experimental outcomes. With a motivation to avoid those, this work introduces technical challenges in applying three sensor techniques: high precision tensiometer, spatial time-domain reflectometry (spatial TDR) and digital bench scales, which were utilized to measure three fundamental variables: soil suction, moisture content and accumulative outflow. The technical challenges are comprehensively elaborated from five aspects: the functional mechanism, assembling/manufacturing approaches, installation procedure, simultaneous data-logging configurations and post data/signal processing. The conclusions drawn in this work provide sufficient technical details of three sensors in terms of the aforementioned five aspects. This work aims to facilitate any new research fellows who carry out laboratory-scale soil column tests using the three sensors mentioned above. It is also expected that this work will salvage any experimenters having troubleshooting issues with those sensors and help researchers bypass those issues to focus more on their primary research interests. |
format | Online Article Text |
id | pubmed-9144893 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91448932022-05-29 The Technical Challenges for Applying Unsaturated Soil Sensors to Conduct Laboratory-Scale Seepage Experiments Yan, Guanxi Bore, Thierry Bhuyan, Habibullah Schlaeger, Stefan Scheuermann, Alexander Sensors (Basel) Article Although many unsaturated soil experiments have successfully delivered positive outcomes, most studies just concisely illustrated sensor techniques, because their main objectives focused on bridging research gaps. Inexperienced research fellows might rarely follow up those techniques, so they could encounter very trivial and skill-demanding difficulties, undermining the quality of experimental outcomes. With a motivation to avoid those, this work introduces technical challenges in applying three sensor techniques: high precision tensiometer, spatial time-domain reflectometry (spatial TDR) and digital bench scales, which were utilized to measure three fundamental variables: soil suction, moisture content and accumulative outflow. The technical challenges are comprehensively elaborated from five aspects: the functional mechanism, assembling/manufacturing approaches, installation procedure, simultaneous data-logging configurations and post data/signal processing. The conclusions drawn in this work provide sufficient technical details of three sensors in terms of the aforementioned five aspects. This work aims to facilitate any new research fellows who carry out laboratory-scale soil column tests using the three sensors mentioned above. It is also expected that this work will salvage any experimenters having troubleshooting issues with those sensors and help researchers bypass those issues to focus more on their primary research interests. MDPI 2022-05-13 /pmc/articles/PMC9144893/ /pubmed/35632138 http://dx.doi.org/10.3390/s22103724 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yan, Guanxi Bore, Thierry Bhuyan, Habibullah Schlaeger, Stefan Scheuermann, Alexander The Technical Challenges for Applying Unsaturated Soil Sensors to Conduct Laboratory-Scale Seepage Experiments |
title | The Technical Challenges for Applying Unsaturated Soil Sensors to Conduct Laboratory-Scale Seepage Experiments |
title_full | The Technical Challenges for Applying Unsaturated Soil Sensors to Conduct Laboratory-Scale Seepage Experiments |
title_fullStr | The Technical Challenges for Applying Unsaturated Soil Sensors to Conduct Laboratory-Scale Seepage Experiments |
title_full_unstemmed | The Technical Challenges for Applying Unsaturated Soil Sensors to Conduct Laboratory-Scale Seepage Experiments |
title_short | The Technical Challenges for Applying Unsaturated Soil Sensors to Conduct Laboratory-Scale Seepage Experiments |
title_sort | technical challenges for applying unsaturated soil sensors to conduct laboratory-scale seepage experiments |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9144893/ https://www.ncbi.nlm.nih.gov/pubmed/35632138 http://dx.doi.org/10.3390/s22103724 |
work_keys_str_mv | AT yanguanxi thetechnicalchallengesforapplyingunsaturatedsoilsensorstoconductlaboratoryscaleseepageexperiments AT borethierry thetechnicalchallengesforapplyingunsaturatedsoilsensorstoconductlaboratoryscaleseepageexperiments AT bhuyanhabibullah thetechnicalchallengesforapplyingunsaturatedsoilsensorstoconductlaboratoryscaleseepageexperiments AT schlaegerstefan thetechnicalchallengesforapplyingunsaturatedsoilsensorstoconductlaboratoryscaleseepageexperiments AT scheuermannalexander thetechnicalchallengesforapplyingunsaturatedsoilsensorstoconductlaboratoryscaleseepageexperiments AT yanguanxi technicalchallengesforapplyingunsaturatedsoilsensorstoconductlaboratoryscaleseepageexperiments AT borethierry technicalchallengesforapplyingunsaturatedsoilsensorstoconductlaboratoryscaleseepageexperiments AT bhuyanhabibullah technicalchallengesforapplyingunsaturatedsoilsensorstoconductlaboratoryscaleseepageexperiments AT schlaegerstefan technicalchallengesforapplyingunsaturatedsoilsensorstoconductlaboratoryscaleseepageexperiments AT scheuermannalexander technicalchallengesforapplyingunsaturatedsoilsensorstoconductlaboratoryscaleseepageexperiments |