Cargando…
Exploitation of Plant Growth Promoting Bacteria for Sustainable Agriculture: Hierarchical Approach to Link Laboratory and Field Experiments
To feed a world population, which will reach 9.7 billion in 2050, agricultural production will have to increase by 35–56%. Therefore, more food is urgently needed. Yield improvements for any given crop would require adequate fertilizer, water, and plant protection from pests and disease, but their f...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9144938/ https://www.ncbi.nlm.nih.gov/pubmed/35630310 http://dx.doi.org/10.3390/microorganisms10050865 |
Sumario: | To feed a world population, which will reach 9.7 billion in 2050, agricultural production will have to increase by 35–56%. Therefore, more food is urgently needed. Yield improvements for any given crop would require adequate fertilizer, water, and plant protection from pests and disease, but their further abuse will be economically disadvantageous and will have a negative impact on the environment. Using even more agricultural inputs is simply not possible, and the availability of arable land will be increasingly reduced due to climate changes. To improve agricultural production without further consumption of natural resources, farmers have a powerful ally: the beneficial microorganisms inhabiting the rhizosphere. However, to fully exploit the benefits of these microorganisms and therefore to widely market microbial-based products, there are still gaps that need to be filled, and here we will describe some critical issues that should be better addressed. |
---|