Cargando…

HIV RGB: Automated Single-Cell Analysis of HIV-1 Rev-Dependent RNA Nuclear Export and Translation Using Image Processing in KNIME

Single-cell imaging has emerged as a powerful means to study viral replication dynamics and identify sites of virus–host interactions. Multivariate aspects of viral replication cycles yield challenges inherent to handling large, complex imaging datasets. Herein, we describe the design and implementa...

Descripción completa

Detalles Bibliográficos
Autores principales: Evans, Edward L., Pocock, Ginger M., Einsdorf, Gabriel, Behrens, Ryan T., Dobson, Ellen T. A., Wiedenmann, Marcel, Birkhold, Christian, Ahlquist, Paul, Eliceiri, Kevin W., Sherer, Nathan M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9145009/
https://www.ncbi.nlm.nih.gov/pubmed/35632645
http://dx.doi.org/10.3390/v14050903
Descripción
Sumario:Single-cell imaging has emerged as a powerful means to study viral replication dynamics and identify sites of virus–host interactions. Multivariate aspects of viral replication cycles yield challenges inherent to handling large, complex imaging datasets. Herein, we describe the design and implementation of an automated, imaging-based strategy, “Human Immunodeficiency Virus Red-Green-Blue” (HIV RGB), for deriving comprehensive single-cell measurements of HIV-1 unspliced (US) RNA nuclear export, translation, and bulk changes to viral RNA and protein (HIV-1 Rev and Gag) subcellular distribution over time. Differentially tagged fluorescent viral RNA and protein species are recorded using multicolor long-term (>24 h) time-lapse video microscopy, followed by image processing using a new open-source computational imaging workflow dubbed “Nuclear Ring Segmentation Analysis and Tracking” (NR-SAT) based on ImageJ plugins that have been integrated into the Konstanz Information Miner (KNIME) analytics platform. We describe a typical HIV RGB experimental setup, detail the image acquisition and NR-SAT workflow accompanied by a step-by-step tutorial, and demonstrate a use case wherein we test the effects of perturbing subcellular localization of the Rev protein, which is essential for viral US RNA nuclear export, on the kinetics of HIV-1 late-stage gene regulation. Collectively, HIV RGB represents a powerful platform for single-cell studies of HIV-1 post-transcriptional RNA regulation. Moreover, we discuss how similar NR-SAT-based design principles and open-source tools might be readily adapted to study a broad range of dynamic viral or cellular processes.