Cargando…
Deep Learning for Glaucoma Detection and Identification of Novel Diagnostic Areas in Diverse Real-World Datasets
PURPOSE: To develop a three-dimensional (3D) deep learning algorithm to detect glaucoma using spectral-domain optical coherence tomography (SD-OCT) optic nerve head (ONH) cube scans and validate its performance on ethnically diverse real-world datasets and on cropped ONH scans. METHODS: In total, 24...
Autores principales: | Noury, Erfan, Mannil, Suria S., Chang, Robert T., Ran, An Ran, Cheung, Carol Y., Thapa, Suman S., Rao, Harsha L., Dasari, Srilakshmi, Riyazuddin, Mohammed, Chang, Dolly, Nagaraj, Sriharsha, Tham, Clement C., Zadeh, Reza |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9145034/ https://www.ncbi.nlm.nih.gov/pubmed/35551345 http://dx.doi.org/10.1167/tvst.11.5.11 |
Ejemplares similares
-
A 3D Deep Learning System for Detecting Referable Glaucoma Using Full OCT Macular Cube Scans
por: Russakoff, Daniel B., et al.
Publicado: (2020) -
A comparison of the diagnostic ability of vessel density and structural measurements of optical coherence tomography in primary open angle glaucoma
por: Rao, Harsha L., et al.
Publicado: (2017) -
Three-Dimensional Multi-Task Deep Learning Model to Detect Glaucomatous Optic Neuropathy and Myopic Features From Optical Coherence Tomography Scans: A Retrospective Multi-Centre Study
por: Ran, An Ran, et al.
Publicado: (2022) -
Comparison of optical coherence tomography angiography metrics in primary angle-closure glaucoma and normal-tension glaucoma
por: Shen, Ruyue, et al.
Publicado: (2021) -
Retinal vasculature in glaucoma: a review
por: Chan, Karen K W, et al.
Publicado: (2017)