Cargando…
Influences of Microscopic Imaging Conditions on Accuracy of Cell Morphology Discrimination Using Convolutional Neural Network of Deep Learning
Recently, automated cell culture devices have become necessary for cell therapy applications. The maintenance of cell functions is critical for cell expansion. However, there are risks of losing these functions, owing to disturbances in the surrounding environment and culturing procedures. Therefore...
Autores principales: | Yamamoto, Masashi, Miyata, Shogo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9145082/ https://www.ncbi.nlm.nih.gov/pubmed/35630227 http://dx.doi.org/10.3390/mi13050760 |
Ejemplares similares
-
Transfer Learning with Deep Convolutional Neural Networks for Classifying Cellular Morphological Changes
por: Kensert, Alexander, et al.
Publicado: (2019) -
Deep Convolutional Neural Network for Nasopharyngeal Carcinoma Discrimination on MRI by Comparison of Hierarchical and Simple Layered Convolutional Neural Networks
por: Ji, Li, et al.
Publicado: (2022) -
Classification of scanning electron microscope images of pharmaceutical excipients using deep convolutional neural networks with transfer learning
por: Iwata, Hiroaki, et al.
Publicado: (2022) -
Deep Convolutional Neural Networks Enable Discrimination of Heterogeneous Digital Pathology Images
por: Khosravi, Pegah, et al.
Publicado: (2017) -
Microscopic nuclei classification, segmentation, and detection with improved deep convolutional neural networks (DCNN)
por: Alom, Zahangir, et al.
Publicado: (2022)