Cargando…
EEG-Based Alzheimer’s Disease Recognition Using Robust-PCA and LSTM Recurrent Neural Network
The use of electroencephalography (EEG) has recently grown as a means to diagnose neurodegenerative pathologies such as Alzheimer’s disease (AD). AD recognition can benefit from machine learning methods that, compared with traditional manual diagnosis methods, have higher reliability and improved re...
Autores principales: | Alessandrini, Michele, Biagetti, Giorgio, Crippa, Paolo, Falaschetti, Laura, Luzzi, Simona, Turchetti, Claudio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9145212/ https://www.ncbi.nlm.nih.gov/pubmed/35632105 http://dx.doi.org/10.3390/s22103696 |
Ejemplares similares
-
A Deep Learning Model for Correlation Analysis between Electroencephalography Signal and Speech Stimuli
por: Alessandrini, Michele, et al.
Publicado: (2023) -
Classifier Level Fusion of Accelerometer and sEMG Signals for Automatic Fitness Activity Diarization
por: Biagetti, Giorgio, et al.
Publicado: (2018) -
Human activity monitoring system based on wearable sEMG and accelerometer wireless sensor nodes
por: Biagetti, Giorgio, et al.
Publicado: (2018) -
Energy and Performance Analysis of Lossless Compression Algorithms for Wireless EMG Sensors
por: Biagetti, Giorgio, et al.
Publicado: (2021) -
Dataset from PPG wireless sensor for activity monitoring
por: Biagetti, Giorgio, et al.
Publicado: (2019)