Cargando…

Inhibition of Alkali-Carbonate Reaction by Fly Ash and Metakaolin on Dolomitic Limestones

In this paper, the dolomitic limestone determined as alkali–carbonate-reactive by various methods is used as an aggregate. Inhibition experiments were carried out on the basis of the concrete microbar method (RILEM AAR-5 standard), in which 10%, 30%, and 50% fly ash and metakaolin were used to repla...

Descripción completa

Detalles Bibliográficos
Autores principales: Cao, Huan, Mao, Zhongyang, Huang, Xiaojun, Deng, Min
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9145237/
https://www.ncbi.nlm.nih.gov/pubmed/35629565
http://dx.doi.org/10.3390/ma15103538
Descripción
Sumario:In this paper, the dolomitic limestone determined as alkali–carbonate-reactive by various methods is used as an aggregate. Inhibition experiments were carried out on the basis of the concrete microbar method (RILEM AAR-5 standard), in which 10%, 30%, and 50% fly ash and metakaolin were used to replace cement. Thermogravimetric–differential scanning calorimetry (TG-DSC), X-ray diffractometry (XRD), mercury intrusion porosimetry (MIP), and scanning electron microscopy–energy dispersive X-ray spectrometry (SEM-EDS) were used to analyze the inhibition mechanism of fly ash and metakaolin on ACR. The results show that the expansion of samples at the age of 28 days are less than 0.10% when the fly ash contents exceed 30% and the metakaolin contents exceed 10%, which proves that the ACR is inhibited effectively. Meanwhile, the Ca(OH)(2) content of the samples was reduced and the pore structure of the samples was optimized after adding fly ash and metakaolin. The dolomite crystals in the samples containing 50% fly ash and metakaolin are relatively complete.