Cargando…

Thermocatalytic Conversion of Plastics into Liquid Fuels over Clays

Recycling polymer waste is a great challenge in the context of the growing use of plastics. Given the non-renewability of fossil fuels, the task of processing plastic waste into liquid fuels seems to be a promising one. Thermocatalytic conversion is one of the methods that allows obtaining liquid pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Seliverstov, Evgeniy S., Furda, Lyubov V., Lebedeva, Olga E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9145246/
https://www.ncbi.nlm.nih.gov/pubmed/35631997
http://dx.doi.org/10.3390/polym14102115
_version_ 1784716242192433152
author Seliverstov, Evgeniy S.
Furda, Lyubov V.
Lebedeva, Olga E.
author_facet Seliverstov, Evgeniy S.
Furda, Lyubov V.
Lebedeva, Olga E.
author_sort Seliverstov, Evgeniy S.
collection PubMed
description Recycling polymer waste is a great challenge in the context of the growing use of plastics. Given the non-renewability of fossil fuels, the task of processing plastic waste into liquid fuels seems to be a promising one. Thermocatalytic conversion is one of the methods that allows obtaining liquid products of the required hydrocarbon range. Clays and clay minerals can be distinguished among possible environmentally friendly, cheap, and common catalysts. The moderate acidity and the presence of both Lewis and Brønsted acid sites on the surface of clays favor heavier hydrocarbons in liquid products of reactions occurring in their pores. Liquids produced with the use of clays are often reported as being in the gasoline and diesel range. In this review, the comprehensive information on the thermocatalytic conversion of plastics over clays obtained during the last two decades was summarized. The main experimental parameters for catalytic conversion of plastics according to the articles’ analysis, were the reaction temperature, the acidity of modified catalysts, and the catalyst-to-plastic ratio. The best clay catalysts observed were the following: bentonite/spent fluid cracking catalyst for high-density polyethylene (HDPE); acid-restructured montmorillonite for medium-density polyethylene (MDPE); neat kaolin powder for low-density polyethylene (LDPE); Ni/acid-washed bentonite clay for polypropylene (PP); neat kaolin for polystyrene (PS); Fe-restructured natural clay for a mixture of polyethylene, PP, PS, polyvinyl chloride (PVC), and polyethylene terephthalate (PET). The main problem in using natural clays and clay minerals as catalysts is their heterogeneous composition, which can vary even within the same deposit. The serpentine group is of interest in studying its catalytic properties as fairly common clay minerals.
format Online
Article
Text
id pubmed-9145246
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-91452462022-05-29 Thermocatalytic Conversion of Plastics into Liquid Fuels over Clays Seliverstov, Evgeniy S. Furda, Lyubov V. Lebedeva, Olga E. Polymers (Basel) Review Recycling polymer waste is a great challenge in the context of the growing use of plastics. Given the non-renewability of fossil fuels, the task of processing plastic waste into liquid fuels seems to be a promising one. Thermocatalytic conversion is one of the methods that allows obtaining liquid products of the required hydrocarbon range. Clays and clay minerals can be distinguished among possible environmentally friendly, cheap, and common catalysts. The moderate acidity and the presence of both Lewis and Brønsted acid sites on the surface of clays favor heavier hydrocarbons in liquid products of reactions occurring in their pores. Liquids produced with the use of clays are often reported as being in the gasoline and diesel range. In this review, the comprehensive information on the thermocatalytic conversion of plastics over clays obtained during the last two decades was summarized. The main experimental parameters for catalytic conversion of plastics according to the articles’ analysis, were the reaction temperature, the acidity of modified catalysts, and the catalyst-to-plastic ratio. The best clay catalysts observed were the following: bentonite/spent fluid cracking catalyst for high-density polyethylene (HDPE); acid-restructured montmorillonite for medium-density polyethylene (MDPE); neat kaolin powder for low-density polyethylene (LDPE); Ni/acid-washed bentonite clay for polypropylene (PP); neat kaolin for polystyrene (PS); Fe-restructured natural clay for a mixture of polyethylene, PP, PS, polyvinyl chloride (PVC), and polyethylene terephthalate (PET). The main problem in using natural clays and clay minerals as catalysts is their heterogeneous composition, which can vary even within the same deposit. The serpentine group is of interest in studying its catalytic properties as fairly common clay minerals. MDPI 2022-05-23 /pmc/articles/PMC9145246/ /pubmed/35631997 http://dx.doi.org/10.3390/polym14102115 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Seliverstov, Evgeniy S.
Furda, Lyubov V.
Lebedeva, Olga E.
Thermocatalytic Conversion of Plastics into Liquid Fuels over Clays
title Thermocatalytic Conversion of Plastics into Liquid Fuels over Clays
title_full Thermocatalytic Conversion of Plastics into Liquid Fuels over Clays
title_fullStr Thermocatalytic Conversion of Plastics into Liquid Fuels over Clays
title_full_unstemmed Thermocatalytic Conversion of Plastics into Liquid Fuels over Clays
title_short Thermocatalytic Conversion of Plastics into Liquid Fuels over Clays
title_sort thermocatalytic conversion of plastics into liquid fuels over clays
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9145246/
https://www.ncbi.nlm.nih.gov/pubmed/35631997
http://dx.doi.org/10.3390/polym14102115
work_keys_str_mv AT seliverstovevgeniys thermocatalyticconversionofplasticsintoliquidfuelsoverclays
AT furdalyubovv thermocatalyticconversionofplasticsintoliquidfuelsoverclays
AT lebedevaolgae thermocatalyticconversionofplasticsintoliquidfuelsoverclays