Cargando…

Ultra-Broadband Tunable Terahertz Metamaterial Absorber Based on Double-Layer Vanadium Dioxide Square Ring Arrays

Based on the phase transition of vanadium dioxide(VO(2)), an ultra-broadband tunable terahertz metamaterial absorber is proposed. The absorber consists of bilayer VO(2) square ring arrays with different sizes, which are completely wrapped in Topas and placed on gold substrate. The simulation results...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Pengyu, Chen, Guoquan, Hou, Zheyu, Zhang, Yizhuo, Shen, Jian, Li, Chaoyang, Zhao, Maolin, Gao, Zhuozhen, Li, Zhiqi, Tang, Tingting
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9145387/
https://www.ncbi.nlm.nih.gov/pubmed/35630136
http://dx.doi.org/10.3390/mi13050669
Descripción
Sumario:Based on the phase transition of vanadium dioxide(VO(2)), an ultra-broadband tunable terahertz metamaterial absorber is proposed. The absorber consists of bilayer VO(2) square ring arrays with different sizes, which are completely wrapped in Topas and placed on gold substrate. The simulation results show that the absorption greater than 90% has frequencies ranging from 1.63 THz to 12.39 THz, which provides an absorption frequency bandwidth of 10.76 THz, and a relative bandwidth of 153.5%. By changing the electrical conductivity of VO(2), the absorption intensity can be dynamically adjusted between 4.4% and 99.9%. The physical mechanism of complete absorption is elucidated by the impedance matching theory and field distribution. The proposed absorber has demonstrated its properties of polarization insensitivity and wide-angle absorption, and therefore has a variety of application prospects in the terahertz range, such as stealth, modulation, and sensing.