Cargando…

Role of Polyoxometalate Contents in Polypyrrole: Linear Actuation and Energy Storage

A combination of polyoxometalates with polypyrrole is introduced in this work. Our goal was to include phosphotungstic acid (PTA) in different molar concentrations (0.005, 0.01, and 0.05 M) in the electropolymerization of pyrrole doped with dodecylbenzene sulfonate (DBS) and phosphotungstinates (PT)...

Descripción completa

Detalles Bibliográficos
Autores principales: Le, Quoc Bao, Zondaka, Zane, Harjo, Madis, Nguyen, Ngoc Tuan, Kiefer, Rudolf
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9145510/
https://www.ncbi.nlm.nih.gov/pubmed/35629645
http://dx.doi.org/10.3390/ma15103619
Descripción
Sumario:A combination of polyoxometalates with polypyrrole is introduced in this work. Our goal was to include phosphotungstic acid (PTA) in different molar concentrations (0.005, 0.01, and 0.05 M) in the electropolymerization of pyrrole doped with dodecylbenzene sulfonate (DBS) and phosphotungstinates (PT), forming PPy/DBS-PT films. Scanning electron microscopy (SEM) revealed that the PPy/DBS-PT films became denser and more compact with increasing PTA concentrations. The incorporation of PT in PPy/DBS was analyzed using Fourier-transform infrared (FTIR) and energy dispersive X-ray (EDX) spectroscopy. The linear actuation in cyclic voltammetry and potential square wave steps in an organic electrolyte revealed increasing mixed actuation, with major expansion upon oxidation found for PPy/DBS-PT films with a PTA concentration of 0.005 M. Best results of a strain of 12.8% and stress at 0.68 MPa were obtained for PPy/DBS-PT (0.01 M). The PPy/DBS-PT films polymerized in the presence of 0.05 M of PTA and showed main expansion upon reduction, changing the actuation direction. Chronopotentiometric measurements of PPy/DBS-PT samples were conducted to determine the specific capacitance optimal for a 0.01 M PTA concentration in the range of 80 F g(−1) (±0.22 A g(−1)).