Cargando…

Quantum Diffusion in the Lowest Landau Level of Disordered Graphene

Electronic transport in the lowest Landau level of disordered graphene sheets placed in a homogeneous perpendicular magnetic field is a long-standing and cumbersome problem which defies a conclusive solution for several years. Because the modeled system lacks an intrinsic small parameter, the theore...

Descripción completa

Detalles Bibliográficos
Autores principales: Sinner, Andreas, Tkachov, Gregor
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9145546/
https://www.ncbi.nlm.nih.gov/pubmed/35630897
http://dx.doi.org/10.3390/nano12101675
Descripción
Sumario:Electronic transport in the lowest Landau level of disordered graphene sheets placed in a homogeneous perpendicular magnetic field is a long-standing and cumbersome problem which defies a conclusive solution for several years. Because the modeled system lacks an intrinsic small parameter, the theoretical picture is infested with singularities and anomalies. We propose an analytical approach to the conductivity based on the analysis of the diffusive processes, and we calculate the density of states, the diffusion coefficient and the static conductivity. The obtained results are not only interesting from the purely theoretical point of view but have a practical significance as well, especially for the development of the novel high-precision calibration devices.