Cargando…
A Systematic Study on Electromyography-Based Hand Gesture Recognition for Assistive Robots Using Deep Learning and Machine Learning Models
Upper limb amputation severely affects the quality of life and the activities of daily living of a person. In the last decade, many robotic hand prostheses have been developed which are controlled by using various sensing technologies such as artificial vision and tactile and surface electromyograph...
Autores principales: | Gopal, Pranesh, Gesta, Amandine, Mohebbi, Abolfazl |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9145604/ https://www.ncbi.nlm.nih.gov/pubmed/35632058 http://dx.doi.org/10.3390/s22103650 |
Ejemplares similares
-
Real-Time Hand Gesture Recognition Using Surface Electromyography and Machine Learning: A Systematic Literature Review
por: Jaramillo-Yánez, Andrés, et al.
Publicado: (2020) -
Gesture Recognition Using Surface Electromyography and Deep Learning for Prostheses Hand: State-of-the-Art, Challenges, and Future
por: Li, Wei, et al.
Publicado: (2021) -
Gesture Recognition by Ensemble Extreme Learning Machine Based on Surface Electromyography Signals
por: Peng, Fulai, et al.
Publicado: (2022) -
Data Augmentation of Surface Electromyography for Hand Gesture Recognition
por: Tsinganos, Panagiotis, et al.
Publicado: (2020) -
putEMG—A Surface Electromyography Hand Gesture Recognition Dataset
por: Kaczmarek, Piotr, et al.
Publicado: (2019)