Cargando…

Serum BDNF and Selenium Levels in Elite Athletes Exposed to Blows

Background and Objectives: The study aimed to investigate the combined acute and long-term effects of exposure to blows and exercise on serum BDNF (brain-derived neurotrophic factor) and selenium levels. Materials and Methods: Serum BDNF and selenium levels were determined in 40 male elite athletes...

Descripción completa

Detalles Bibliográficos
Autores principales: Ozan, Murat, Buzdağli, Yusuf, Baygutalp, Nurcan Kılıç, Yüce, Neslihan, Baygutalp, Fatih, Bakan, Ebubekir
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9145651/
https://www.ncbi.nlm.nih.gov/pubmed/35630025
http://dx.doi.org/10.3390/medicina58050608
Descripción
Sumario:Background and Objectives: The study aimed to investigate the combined acute and long-term effects of exposure to blows and exercise on serum BDNF (brain-derived neurotrophic factor) and selenium levels. Materials and Methods: Serum BDNF and selenium levels were determined in 40 male elite athletes before and after vigorous exercise (training match) with a probability of exposure to blows and in 10 sedentary men subjected to exercise (Astrand running protocol). Results: Serum BDNF levels were found 11.50 ± 3.50 ng/mL before exercise and 14.02 ± 3.15 ng/mL after exercise in the athlete group (p = 0.02), and 12.18 ± 4.55 ng/ mL and 11.74 ± 2.48 ng/ mL before and after exercise in the sedentary group, respectively (p = 0.873). Serum BDNF (pre-exercise, baseline) levels were slightly lower in the athlete group than those in the sedentary group (11.50 ± 3.50 and 12.18 ± 4.55 ng/mL, respectively, p = 0.796). Pre-exercise serum selenium levels in athletes were significantly higher compared to those of sedentary participants (130.53 ± 36.79 and 95.51 ± 20.57 µg/L, respectively, p = 0.011). There was no difference in selenium levels after exercise (124.01 ± 29.96 µg/L) compared to pre-exercise (130.53 ± 36.79 µg/L) in the athlete group (p = 0.386). Similarly, there was no difference in selenium levels after exercise (113.28 ± 25.51 µg/L) compared to pre-exercise (95.51 ± 20.57 µg/L) in the sedentary group (p = 0.251). Conclusions: BDNF results show that even if athletes are exposed to blows, they may be protected from the long-term effects of blows thanks to the protective effect of their non-sedentary lifestyle. Regular exercise may have a protective effect on maintaining serum selenium levels in athletes even exposed to blows chronically.