Cargando…

Design and Analysis of High-Capacity MIMO System in Line-of-Sight Communication

The phase of the channel matrix elements has a significant impact on channel capacity in a mobile multiple-input multiple-output (MIMO) communication system, notably in line-of-sight (LoS) communication. In this paper, the general expression for the phase of the channel matrix at maximum channel cap...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Kuangming, Wang, Xiaoyong, Jin, Yanliang, Saleem, Asad, Zheng, Guoxin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9145657/
https://www.ncbi.nlm.nih.gov/pubmed/35632082
http://dx.doi.org/10.3390/s22103669
Descripción
Sumario:The phase of the channel matrix elements has a significant impact on channel capacity in a mobile multiple-input multiple-output (MIMO) communication system, notably in line-of-sight (LoS) communication. In this paper, the general expression for the phase of the channel matrix at maximum channel capacity is determined. Moreover, the optimal antenna configuration of the 2 × 2 and 3 × 3 transceiver antenna array is realized for LoS communication, providing methods for [Formula: see text] optimal antenna placement, which can be used in short-range LoS communication and non-scattering environment communication, such as coupling train communication and inter-satellite communication. Simulation results show that the 2 × 2 rectangular antenna array is more suitable for the communication of coupling trains, while the 3 × 3 circular arc antenna array is more suitable for virtual coupling trains according to antenna configurations. Moreover, the 2 × 2 antenna rectangular configuration proposed in this paper has reached the optimal channel in inter-satellite communication, which lays a foundation for the deployment of communication systems.