Cargando…
Dynamic Task Offloading for Cloud-Assisted Vehicular Edge Computing Networks: A Non-Cooperative Game Theoretic Approach †
Vehicular edge computing (VEC) is one of the prominent ideas to enhance the computation and storage capabilities of vehicular networks (VNs) through task offloading. In VEC, the resource-constrained vehicles offload their computing tasks to the local road-side units (RSUs) for rapid computation. How...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9145727/ https://www.ncbi.nlm.nih.gov/pubmed/35632088 http://dx.doi.org/10.3390/s22103678 |
Sumario: | Vehicular edge computing (VEC) is one of the prominent ideas to enhance the computation and storage capabilities of vehicular networks (VNs) through task offloading. In VEC, the resource-constrained vehicles offload their computing tasks to the local road-side units (RSUs) for rapid computation. However, due to the high mobility of vehicles and the overloaded problem, VEC experiences a great deal of challenges when determining a location for processing the offloaded task in real time. As a result, this degrades the quality of vehicular performance. Therefore, to deal with these above-mentioned challenges, an efficient dynamic task offloading approach based on a non-cooperative game (NGTO) is proposed in this study. In the NGTO approach, each vehicle can make its own strategy on whether a task is offloaded to a multi-access edge computing (MEC) server or a cloud server to maximize its benefits. Our proposed strategy can dynamically adjust the task-offloading probability to acquire the maximum utility for each vehicle. However, we used a best response offloading strategy algorithm for the task-offloading game in order to achieve a unique and stable equilibrium. Numerous simulation experiments affirm that our proposed scheme fulfills the performance guarantees and can reduce the response time and task-failure rate by almost 47.6% and 54.6%, respectively, when compared with the local RSU computing (LRC) scheme. Moreover, the reduced rates are approximately 32.6% and 39.7%, respectively, when compared with a random offloading scheme, and approximately 26.5% and 28.4%, respectively, when compared with a collaborative offloading scheme. |
---|