Cargando…

µRA—A New Compact Easy-to-Use Raman System for All Hydrogen Isotopologues

We have developed a new compact and cost-efficient Laser-Raman system for the simultaneous measurement of all six hydrogen isotopologues. The focus of this research was set on producing a tool that can be implemented in virtually any existing setup providing in situ process control and analytics. Th...

Descripción completa

Detalles Bibliográficos
Autores principales: Priester, Florian, Marsteller, Alexander, Niemes, Simon, Tuchscherer, Nancy, Welte, Stefan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9145740/
https://www.ncbi.nlm.nih.gov/pubmed/35632366
http://dx.doi.org/10.3390/s22103952
Descripción
Sumario:We have developed a new compact and cost-efficient Laser-Raman system for the simultaneous measurement of all six hydrogen isotopologues. The focus of this research was set on producing a tool that can be implemented in virtually any existing setup providing in situ process control and analytics. The “micro Raman (µRA)” system is completely fiber-coupled for an easy setup consisting of (i) a spectrometer/CCD unit, (ii) a 532 nm laser, and (iii) a commercial Raman head coupled with a newly developed, tritium-compatible all-metal sealed DN16CF flange/Raman window serving as the process interface. To simplify the operation, we developed our own software suite for instrument control, data acquisition, and data evaluation in real-time. We have given a detailed description of the system, showing the system’s capabilities in terms of the lower level of detection, and presented the results of a dedicated campaign using the accurate reference mixtures of all of the hydrogen isotopologues benchmarking µRA against two of the most sensitive Raman systems for tritium operation. Due to its modular nature, modifications that allow for the detection of various other gas species can be easily implemented.