Cargando…

Diversity of Cytochrome c Oxidase Assembly Proteins in Bacteria

Cytochrome c oxidase in animals, plants and many aerobic bacteria functions as the terminal enzyme of the respiratory chain where it reduces molecular oxygen to form water in a reaction coupled to energy conservation. The three-subunit core of the enzyme is conserved, whereas several proteins identi...

Descripción completa

Detalles Bibliográficos
Autor principal: Hederstedt, Lars
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9145763/
https://www.ncbi.nlm.nih.gov/pubmed/35630371
http://dx.doi.org/10.3390/microorganisms10050926
Descripción
Sumario:Cytochrome c oxidase in animals, plants and many aerobic bacteria functions as the terminal enzyme of the respiratory chain where it reduces molecular oxygen to form water in a reaction coupled to energy conservation. The three-subunit core of the enzyme is conserved, whereas several proteins identified to function in the biosynthesis of the common family A1 cytochrome c oxidase show diversity in bacteria. Using the model organisms Bacillus subtilis, Corynebacterium glutamicum, Paracoccus denitrificans, and Rhodobacter sphaeroides, the present review focuses on proteins for assembly of the heme a, heme a(3), Cu(B), and Cu(A) metal centers. The known biosynthesis proteins are, in most cases, discovered through the analysis of mutants. All proteins directly involved in cytochrome c oxidase assembly have likely not been identified in any organism. Limitations in the use of mutants to identify and functionally analyze biosynthesis proteins are discussed in the review. Comparative biochemistry helps to determine the role of assembly factors. This information can, for example, explain the cause of some human mitochondrion-based diseases and be used to find targets for new antimicrobial drugs. It also provides information regarding the evolution of aerobic bacteria.