Cargando…
Lightweight Internet of Things Botnet Detection Using One-Class Classification
Like smart phones, the recent years have seen an increased usage of internet of things (IoT) technology. IoT devices, being resource constrained due to smaller size, are vulnerable to various security threats. Recently, many distributed denial of service (DDoS) attacks generated with the help of IoT...
Autores principales: | Malik, Kainat, Rehman, Faisal, Maqsood, Tahir, Mustafa, Saad, Khalid, Osman, Akhunzada, Adnan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9145805/ https://www.ncbi.nlm.nih.gov/pubmed/35632055 http://dx.doi.org/10.3390/s22103646 |
Ejemplares similares
-
IoTDS: A One-Class Classification Approach to Detect Botnets in Internet of Things Devices
por: Bezerra, Vitor Hugo, et al.
Publicado: (2019) -
Using honeypots to model botnet attacks on the internet of medical things()
por: Wang, Huanran, et al.
Publicado: (2022) -
SMOTE-DRNN: A Deep Learning Algorithm for Botnet Detection in the Internet-of-Things Networks
por: Popoola, Segun I., et al.
Publicado: (2021) -
Botnet Attack Detection in IoT Using Machine Learning
por: Alissa, Khalid, et al.
Publicado: (2022) -
A Lightweight Continuous Authentication Protocol for the Internet of Things
por: Chuang, Yo-Hsuan, et al.
Publicado: (2018)