Cargando…

Clonal Tracing of Heart Regeneration

Cardiomyocytes in the adult mammalian heart have a low turnover during homeostasis. After myocardial injury, there is irreversible loss of cardiomyocytes, which results in subsequent scar formation and cardiac remodeling. In order to better understand and characterize the proliferative capacity of c...

Descripción completa

Detalles Bibliográficos
Autores principales: Kolluri, Kamal, Nazarian, Taline, Ardehali, Reza
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9145832/
https://www.ncbi.nlm.nih.gov/pubmed/35621852
http://dx.doi.org/10.3390/jcdd9050141
Descripción
Sumario:Cardiomyocytes in the adult mammalian heart have a low turnover during homeostasis. After myocardial injury, there is irreversible loss of cardiomyocytes, which results in subsequent scar formation and cardiac remodeling. In order to better understand and characterize the proliferative capacity of cardiomyocytes, in vivo methods have been developed to track their fate during normal development and after injury. Lineage tracing models are of particular interest due to their ability to record cell proliferation events over a long period of time, either during development or in response to a pathological event. This paper reviews two well-studied lineage-tracing, transgenic mouse models—mosaic analysis with double markers and rainbow reporter system.