Cargando…
A High-Precision Deep Learning Algorithm to Localize Idiopathic Ventricular Arrhythmias
Background: An accurate prediction of ventricular arrhythmia (VA) origins can optimize the strategy of ablation, and facilitate the procedure. Objective: This study aimed to develop a machine learning model from surface ECG to predict VA origins. Methods: We obtained 3628 waves of ventricular premat...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9145898/ https://www.ncbi.nlm.nih.gov/pubmed/35629186 http://dx.doi.org/10.3390/jpm12050764 |
_version_ | 1784716428268535808 |
---|---|
author | Chang, Ting-Yung Chen, Ke-Wei Liu, Chih-Min Chang, Shih-Lin Lin, Yenn-Jiang Lo, Li-Wei Hu, Yu-Feng Chung, Fa-Po Lin, Chin-Yu Kuo, Ling Chen, Shih-Ann |
author_facet | Chang, Ting-Yung Chen, Ke-Wei Liu, Chih-Min Chang, Shih-Lin Lin, Yenn-Jiang Lo, Li-Wei Hu, Yu-Feng Chung, Fa-Po Lin, Chin-Yu Kuo, Ling Chen, Shih-Ann |
author_sort | Chang, Ting-Yung |
collection | PubMed |
description | Background: An accurate prediction of ventricular arrhythmia (VA) origins can optimize the strategy of ablation, and facilitate the procedure. Objective: This study aimed to develop a machine learning model from surface ECG to predict VA origins. Methods: We obtained 3628 waves of ventricular premature complex (VPC) from 731 patients. We chose to include all signal information from 12 ECG leads for model input. A model is composed of two groups of convolutional neural network (CNN) layers. We chose around 13% of all the data for model testing and 10% for validation. Results: In the first step, we trained a model for binary classification of VA source from the left or right side of the chamber with an area under the curve (AUC) of 0.963. With a threshold of 0.739, the sensitivity and specification are 90.7% and 92.3% for identifying left side VA. Then, we obtained the second model for predicting VA from the LV summit with AUC is 0.998. With a threshold of 0.739, the sensitivity and specificity are 100% and 98% for the LV summit. Conclusions: Our machine learning algorithm of surface ECG facilitates the localization of VPC, especially for the LV summit, which might optimize the ablation strategy. |
format | Online Article Text |
id | pubmed-9145898 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91458982022-05-29 A High-Precision Deep Learning Algorithm to Localize Idiopathic Ventricular Arrhythmias Chang, Ting-Yung Chen, Ke-Wei Liu, Chih-Min Chang, Shih-Lin Lin, Yenn-Jiang Lo, Li-Wei Hu, Yu-Feng Chung, Fa-Po Lin, Chin-Yu Kuo, Ling Chen, Shih-Ann J Pers Med Article Background: An accurate prediction of ventricular arrhythmia (VA) origins can optimize the strategy of ablation, and facilitate the procedure. Objective: This study aimed to develop a machine learning model from surface ECG to predict VA origins. Methods: We obtained 3628 waves of ventricular premature complex (VPC) from 731 patients. We chose to include all signal information from 12 ECG leads for model input. A model is composed of two groups of convolutional neural network (CNN) layers. We chose around 13% of all the data for model testing and 10% for validation. Results: In the first step, we trained a model for binary classification of VA source from the left or right side of the chamber with an area under the curve (AUC) of 0.963. With a threshold of 0.739, the sensitivity and specification are 90.7% and 92.3% for identifying left side VA. Then, we obtained the second model for predicting VA from the LV summit with AUC is 0.998. With a threshold of 0.739, the sensitivity and specificity are 100% and 98% for the LV summit. Conclusions: Our machine learning algorithm of surface ECG facilitates the localization of VPC, especially for the LV summit, which might optimize the ablation strategy. MDPI 2022-05-09 /pmc/articles/PMC9145898/ /pubmed/35629186 http://dx.doi.org/10.3390/jpm12050764 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Chang, Ting-Yung Chen, Ke-Wei Liu, Chih-Min Chang, Shih-Lin Lin, Yenn-Jiang Lo, Li-Wei Hu, Yu-Feng Chung, Fa-Po Lin, Chin-Yu Kuo, Ling Chen, Shih-Ann A High-Precision Deep Learning Algorithm to Localize Idiopathic Ventricular Arrhythmias |
title | A High-Precision Deep Learning Algorithm to Localize Idiopathic Ventricular Arrhythmias |
title_full | A High-Precision Deep Learning Algorithm to Localize Idiopathic Ventricular Arrhythmias |
title_fullStr | A High-Precision Deep Learning Algorithm to Localize Idiopathic Ventricular Arrhythmias |
title_full_unstemmed | A High-Precision Deep Learning Algorithm to Localize Idiopathic Ventricular Arrhythmias |
title_short | A High-Precision Deep Learning Algorithm to Localize Idiopathic Ventricular Arrhythmias |
title_sort | high-precision deep learning algorithm to localize idiopathic ventricular arrhythmias |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9145898/ https://www.ncbi.nlm.nih.gov/pubmed/35629186 http://dx.doi.org/10.3390/jpm12050764 |
work_keys_str_mv | AT changtingyung ahighprecisiondeeplearningalgorithmtolocalizeidiopathicventriculararrhythmias AT chenkewei ahighprecisiondeeplearningalgorithmtolocalizeidiopathicventriculararrhythmias AT liuchihmin ahighprecisiondeeplearningalgorithmtolocalizeidiopathicventriculararrhythmias AT changshihlin ahighprecisiondeeplearningalgorithmtolocalizeidiopathicventriculararrhythmias AT linyennjiang ahighprecisiondeeplearningalgorithmtolocalizeidiopathicventriculararrhythmias AT loliwei ahighprecisiondeeplearningalgorithmtolocalizeidiopathicventriculararrhythmias AT huyufeng ahighprecisiondeeplearningalgorithmtolocalizeidiopathicventriculararrhythmias AT chungfapo ahighprecisiondeeplearningalgorithmtolocalizeidiopathicventriculararrhythmias AT linchinyu ahighprecisiondeeplearningalgorithmtolocalizeidiopathicventriculararrhythmias AT kuoling ahighprecisiondeeplearningalgorithmtolocalizeidiopathicventriculararrhythmias AT chenshihann ahighprecisiondeeplearningalgorithmtolocalizeidiopathicventriculararrhythmias AT changtingyung highprecisiondeeplearningalgorithmtolocalizeidiopathicventriculararrhythmias AT chenkewei highprecisiondeeplearningalgorithmtolocalizeidiopathicventriculararrhythmias AT liuchihmin highprecisiondeeplearningalgorithmtolocalizeidiopathicventriculararrhythmias AT changshihlin highprecisiondeeplearningalgorithmtolocalizeidiopathicventriculararrhythmias AT linyennjiang highprecisiondeeplearningalgorithmtolocalizeidiopathicventriculararrhythmias AT loliwei highprecisiondeeplearningalgorithmtolocalizeidiopathicventriculararrhythmias AT huyufeng highprecisiondeeplearningalgorithmtolocalizeidiopathicventriculararrhythmias AT chungfapo highprecisiondeeplearningalgorithmtolocalizeidiopathicventriculararrhythmias AT linchinyu highprecisiondeeplearningalgorithmtolocalizeidiopathicventriculararrhythmias AT kuoling highprecisiondeeplearningalgorithmtolocalizeidiopathicventriculararrhythmias AT chenshihann highprecisiondeeplearningalgorithmtolocalizeidiopathicventriculararrhythmias |