Cargando…

A High-Precision Deep Learning Algorithm to Localize Idiopathic Ventricular Arrhythmias

Background: An accurate prediction of ventricular arrhythmia (VA) origins can optimize the strategy of ablation, and facilitate the procedure. Objective: This study aimed to develop a machine learning model from surface ECG to predict VA origins. Methods: We obtained 3628 waves of ventricular premat...

Descripción completa

Detalles Bibliográficos
Autores principales: Chang, Ting-Yung, Chen, Ke-Wei, Liu, Chih-Min, Chang, Shih-Lin, Lin, Yenn-Jiang, Lo, Li-Wei, Hu, Yu-Feng, Chung, Fa-Po, Lin, Chin-Yu, Kuo, Ling, Chen, Shih-Ann
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9145898/
https://www.ncbi.nlm.nih.gov/pubmed/35629186
http://dx.doi.org/10.3390/jpm12050764
_version_ 1784716428268535808
author Chang, Ting-Yung
Chen, Ke-Wei
Liu, Chih-Min
Chang, Shih-Lin
Lin, Yenn-Jiang
Lo, Li-Wei
Hu, Yu-Feng
Chung, Fa-Po
Lin, Chin-Yu
Kuo, Ling
Chen, Shih-Ann
author_facet Chang, Ting-Yung
Chen, Ke-Wei
Liu, Chih-Min
Chang, Shih-Lin
Lin, Yenn-Jiang
Lo, Li-Wei
Hu, Yu-Feng
Chung, Fa-Po
Lin, Chin-Yu
Kuo, Ling
Chen, Shih-Ann
author_sort Chang, Ting-Yung
collection PubMed
description Background: An accurate prediction of ventricular arrhythmia (VA) origins can optimize the strategy of ablation, and facilitate the procedure. Objective: This study aimed to develop a machine learning model from surface ECG to predict VA origins. Methods: We obtained 3628 waves of ventricular premature complex (VPC) from 731 patients. We chose to include all signal information from 12 ECG leads for model input. A model is composed of two groups of convolutional neural network (CNN) layers. We chose around 13% of all the data for model testing and 10% for validation. Results: In the first step, we trained a model for binary classification of VA source from the left or right side of the chamber with an area under the curve (AUC) of 0.963. With a threshold of 0.739, the sensitivity and specification are 90.7% and 92.3% for identifying left side VA. Then, we obtained the second model for predicting VA from the LV summit with AUC is 0.998. With a threshold of 0.739, the sensitivity and specificity are 100% and 98% for the LV summit. Conclusions: Our machine learning algorithm of surface ECG facilitates the localization of VPC, especially for the LV summit, which might optimize the ablation strategy.
format Online
Article
Text
id pubmed-9145898
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-91458982022-05-29 A High-Precision Deep Learning Algorithm to Localize Idiopathic Ventricular Arrhythmias Chang, Ting-Yung Chen, Ke-Wei Liu, Chih-Min Chang, Shih-Lin Lin, Yenn-Jiang Lo, Li-Wei Hu, Yu-Feng Chung, Fa-Po Lin, Chin-Yu Kuo, Ling Chen, Shih-Ann J Pers Med Article Background: An accurate prediction of ventricular arrhythmia (VA) origins can optimize the strategy of ablation, and facilitate the procedure. Objective: This study aimed to develop a machine learning model from surface ECG to predict VA origins. Methods: We obtained 3628 waves of ventricular premature complex (VPC) from 731 patients. We chose to include all signal information from 12 ECG leads for model input. A model is composed of two groups of convolutional neural network (CNN) layers. We chose around 13% of all the data for model testing and 10% for validation. Results: In the first step, we trained a model for binary classification of VA source from the left or right side of the chamber with an area under the curve (AUC) of 0.963. With a threshold of 0.739, the sensitivity and specification are 90.7% and 92.3% for identifying left side VA. Then, we obtained the second model for predicting VA from the LV summit with AUC is 0.998. With a threshold of 0.739, the sensitivity and specificity are 100% and 98% for the LV summit. Conclusions: Our machine learning algorithm of surface ECG facilitates the localization of VPC, especially for the LV summit, which might optimize the ablation strategy. MDPI 2022-05-09 /pmc/articles/PMC9145898/ /pubmed/35629186 http://dx.doi.org/10.3390/jpm12050764 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Chang, Ting-Yung
Chen, Ke-Wei
Liu, Chih-Min
Chang, Shih-Lin
Lin, Yenn-Jiang
Lo, Li-Wei
Hu, Yu-Feng
Chung, Fa-Po
Lin, Chin-Yu
Kuo, Ling
Chen, Shih-Ann
A High-Precision Deep Learning Algorithm to Localize Idiopathic Ventricular Arrhythmias
title A High-Precision Deep Learning Algorithm to Localize Idiopathic Ventricular Arrhythmias
title_full A High-Precision Deep Learning Algorithm to Localize Idiopathic Ventricular Arrhythmias
title_fullStr A High-Precision Deep Learning Algorithm to Localize Idiopathic Ventricular Arrhythmias
title_full_unstemmed A High-Precision Deep Learning Algorithm to Localize Idiopathic Ventricular Arrhythmias
title_short A High-Precision Deep Learning Algorithm to Localize Idiopathic Ventricular Arrhythmias
title_sort high-precision deep learning algorithm to localize idiopathic ventricular arrhythmias
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9145898/
https://www.ncbi.nlm.nih.gov/pubmed/35629186
http://dx.doi.org/10.3390/jpm12050764
work_keys_str_mv AT changtingyung ahighprecisiondeeplearningalgorithmtolocalizeidiopathicventriculararrhythmias
AT chenkewei ahighprecisiondeeplearningalgorithmtolocalizeidiopathicventriculararrhythmias
AT liuchihmin ahighprecisiondeeplearningalgorithmtolocalizeidiopathicventriculararrhythmias
AT changshihlin ahighprecisiondeeplearningalgorithmtolocalizeidiopathicventriculararrhythmias
AT linyennjiang ahighprecisiondeeplearningalgorithmtolocalizeidiopathicventriculararrhythmias
AT loliwei ahighprecisiondeeplearningalgorithmtolocalizeidiopathicventriculararrhythmias
AT huyufeng ahighprecisiondeeplearningalgorithmtolocalizeidiopathicventriculararrhythmias
AT chungfapo ahighprecisiondeeplearningalgorithmtolocalizeidiopathicventriculararrhythmias
AT linchinyu ahighprecisiondeeplearningalgorithmtolocalizeidiopathicventriculararrhythmias
AT kuoling ahighprecisiondeeplearningalgorithmtolocalizeidiopathicventriculararrhythmias
AT chenshihann ahighprecisiondeeplearningalgorithmtolocalizeidiopathicventriculararrhythmias
AT changtingyung highprecisiondeeplearningalgorithmtolocalizeidiopathicventriculararrhythmias
AT chenkewei highprecisiondeeplearningalgorithmtolocalizeidiopathicventriculararrhythmias
AT liuchihmin highprecisiondeeplearningalgorithmtolocalizeidiopathicventriculararrhythmias
AT changshihlin highprecisiondeeplearningalgorithmtolocalizeidiopathicventriculararrhythmias
AT linyennjiang highprecisiondeeplearningalgorithmtolocalizeidiopathicventriculararrhythmias
AT loliwei highprecisiondeeplearningalgorithmtolocalizeidiopathicventriculararrhythmias
AT huyufeng highprecisiondeeplearningalgorithmtolocalizeidiopathicventriculararrhythmias
AT chungfapo highprecisiondeeplearningalgorithmtolocalizeidiopathicventriculararrhythmias
AT linchinyu highprecisiondeeplearningalgorithmtolocalizeidiopathicventriculararrhythmias
AT kuoling highprecisiondeeplearningalgorithmtolocalizeidiopathicventriculararrhythmias
AT chenshihann highprecisiondeeplearningalgorithmtolocalizeidiopathicventriculararrhythmias