Cargando…
A High-Precision Deep Learning Algorithm to Localize Idiopathic Ventricular Arrhythmias
Background: An accurate prediction of ventricular arrhythmia (VA) origins can optimize the strategy of ablation, and facilitate the procedure. Objective: This study aimed to develop a machine learning model from surface ECG to predict VA origins. Methods: We obtained 3628 waves of ventricular premat...
Autores principales: | Chang, Ting-Yung, Chen, Ke-Wei, Liu, Chih-Min, Chang, Shih-Lin, Lin, Yenn-Jiang, Lo, Li-Wei, Hu, Yu-Feng, Chung, Fa-Po, Lin, Chin-Yu, Kuo, Ling, Chen, Shih-Ann |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9145898/ https://www.ncbi.nlm.nih.gov/pubmed/35629186 http://dx.doi.org/10.3390/jpm12050764 |
Ejemplares similares
-
Ventricular arrhythmias in nonischemic cardiomyopathy
por: Chung, Fa‐Po, et al.
Publicado: (2018) -
Predicting the Origin of Ventricular Arrhythmia Using Acoustic Cardiography
por: Lin, Chin-Yu, et al.
Publicado: (2017) -
Epicardial electrical heterogeneity after amiodarone treatment increases vulnerability to ventricular arrhythmias under therapeutic hypothermia
por: Lin, Chin-Yu, et al.
Publicado: (2023) -
Pleiotropic Effects of Myocardial MMP-9 Inhibition to Prevent Ventricular Arrhythmia
por: Weng, Ching-Hui, et al.
Publicado: (2016) -
Catheter Ablation of Ventricular Tachycardia in Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy
por: Chung, Fa-Po, et al.
Publicado: (2018)