Cargando…

Calcium-Rich Biochar Stimulates Salt Resistance in Pearl Millet (Pennisetum glaucum L.) Plants by Improving Soil Quality and Enhancing the Antioxidant Defense

Shrimp waste is rich in organic compounds and essential plant nutrients, e.g., calcium (Ca), and converting these wastes to organic fertilizer is important for environmental preservation and to achieve sustainable agricultural management. In the current study, Ca-rich biochar was prepared from shrim...

Descripción completa

Detalles Bibliográficos
Autores principales: Abo-Elyousr, Kamal A. M., Mousa, Magdi A. A., Ibrahim, Omer H. M., Alshareef, Nouf Owdah, Eissa, Mamdouh A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9145951/
https://www.ncbi.nlm.nih.gov/pubmed/35631726
http://dx.doi.org/10.3390/plants11101301
_version_ 1784716441186992128
author Abo-Elyousr, Kamal A. M.
Mousa, Magdi A. A.
Ibrahim, Omer H. M.
Alshareef, Nouf Owdah
Eissa, Mamdouh A.
author_facet Abo-Elyousr, Kamal A. M.
Mousa, Magdi A. A.
Ibrahim, Omer H. M.
Alshareef, Nouf Owdah
Eissa, Mamdouh A.
author_sort Abo-Elyousr, Kamal A. M.
collection PubMed
description Shrimp waste is rich in organic compounds and essential plant nutrients, e.g., calcium (Ca), and converting these wastes to organic fertilizer is important for environmental preservation and to achieve sustainable agricultural management. In the current study, Ca-rich biochar was prepared from shrimp wastes (SWB) by pyrolysis at 300 °C. We hypothesized that the Ca-rich biochar will help in solving the problem of plant growth in saline soil by reducing sodium (Na) uptake and mitigating oxidative stress. The current study aimed to investigate the effect of SWB on the quality of saline sandy soil and the mechanism of salt resistance in pearl millet (Pennisetum glaucum L.). Pearl millet plants were planted in saline sandy soil (10 dS m(−1)) in wooden boxes (1.3 × 0.8 m size and 0.4 m height), and 5 doses (0, 1.0, 1.5, 2.0, and 2.5% (w/w)) of SWB were added. SWB application increased the soil quality and nutrient uptake by pearl millet plants. The highest rate of SWB increased the soil microbial biomass carbon and the activity of dehydrogenase enzyme by 43 and 47% compared to the control soil. SWB application reduced the uptake of sodium (Na(+)) and chloride (Cl(−)) and increased the K/Na ratio in the leaf tissues. SWB addition significantly increased the activity of antioxidant enzymes, e.g., ascorbate peroxidase (APX), polyphenol oxidase (PPO), and pyrogallol peroxidases (PPX). The application of 2.5% SWB to the saline soil increased the soluble carbohydrates and proline in plant leaves by 75 and 60%, respectively, and reduced the malondialdehyde (MDA) by 32% compared to the control. SWB enhanced the antioxidant defense and mitigated oxidative stress by improving the synthesis of osmoprotectants, e.g., soluble carbohydrates and proline. Sandy saline soils in arid and semiarid areas suffer greatly from low organic matter contents, which reduces the soil quality and increases the risk of salt during plant growth. The high organic matter and calcium content (30%) in the shrimp waste-derived biochar improved the quality of the saline sandy soil, reduced the uptake of toxic salts, and increased the quality of the forage material. The addition of recycled shrimp waste to saline low-fertility soils improves soil productivity and is safe for soil health.
format Online
Article
Text
id pubmed-9145951
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-91459512022-05-29 Calcium-Rich Biochar Stimulates Salt Resistance in Pearl Millet (Pennisetum glaucum L.) Plants by Improving Soil Quality and Enhancing the Antioxidant Defense Abo-Elyousr, Kamal A. M. Mousa, Magdi A. A. Ibrahim, Omer H. M. Alshareef, Nouf Owdah Eissa, Mamdouh A. Plants (Basel) Article Shrimp waste is rich in organic compounds and essential plant nutrients, e.g., calcium (Ca), and converting these wastes to organic fertilizer is important for environmental preservation and to achieve sustainable agricultural management. In the current study, Ca-rich biochar was prepared from shrimp wastes (SWB) by pyrolysis at 300 °C. We hypothesized that the Ca-rich biochar will help in solving the problem of plant growth in saline soil by reducing sodium (Na) uptake and mitigating oxidative stress. The current study aimed to investigate the effect of SWB on the quality of saline sandy soil and the mechanism of salt resistance in pearl millet (Pennisetum glaucum L.). Pearl millet plants were planted in saline sandy soil (10 dS m(−1)) in wooden boxes (1.3 × 0.8 m size and 0.4 m height), and 5 doses (0, 1.0, 1.5, 2.0, and 2.5% (w/w)) of SWB were added. SWB application increased the soil quality and nutrient uptake by pearl millet plants. The highest rate of SWB increased the soil microbial biomass carbon and the activity of dehydrogenase enzyme by 43 and 47% compared to the control soil. SWB application reduced the uptake of sodium (Na(+)) and chloride (Cl(−)) and increased the K/Na ratio in the leaf tissues. SWB addition significantly increased the activity of antioxidant enzymes, e.g., ascorbate peroxidase (APX), polyphenol oxidase (PPO), and pyrogallol peroxidases (PPX). The application of 2.5% SWB to the saline soil increased the soluble carbohydrates and proline in plant leaves by 75 and 60%, respectively, and reduced the malondialdehyde (MDA) by 32% compared to the control. SWB enhanced the antioxidant defense and mitigated oxidative stress by improving the synthesis of osmoprotectants, e.g., soluble carbohydrates and proline. Sandy saline soils in arid and semiarid areas suffer greatly from low organic matter contents, which reduces the soil quality and increases the risk of salt during plant growth. The high organic matter and calcium content (30%) in the shrimp waste-derived biochar improved the quality of the saline sandy soil, reduced the uptake of toxic salts, and increased the quality of the forage material. The addition of recycled shrimp waste to saline low-fertility soils improves soil productivity and is safe for soil health. MDPI 2022-05-13 /pmc/articles/PMC9145951/ /pubmed/35631726 http://dx.doi.org/10.3390/plants11101301 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Abo-Elyousr, Kamal A. M.
Mousa, Magdi A. A.
Ibrahim, Omer H. M.
Alshareef, Nouf Owdah
Eissa, Mamdouh A.
Calcium-Rich Biochar Stimulates Salt Resistance in Pearl Millet (Pennisetum glaucum L.) Plants by Improving Soil Quality and Enhancing the Antioxidant Defense
title Calcium-Rich Biochar Stimulates Salt Resistance in Pearl Millet (Pennisetum glaucum L.) Plants by Improving Soil Quality and Enhancing the Antioxidant Defense
title_full Calcium-Rich Biochar Stimulates Salt Resistance in Pearl Millet (Pennisetum glaucum L.) Plants by Improving Soil Quality and Enhancing the Antioxidant Defense
title_fullStr Calcium-Rich Biochar Stimulates Salt Resistance in Pearl Millet (Pennisetum glaucum L.) Plants by Improving Soil Quality and Enhancing the Antioxidant Defense
title_full_unstemmed Calcium-Rich Biochar Stimulates Salt Resistance in Pearl Millet (Pennisetum glaucum L.) Plants by Improving Soil Quality and Enhancing the Antioxidant Defense
title_short Calcium-Rich Biochar Stimulates Salt Resistance in Pearl Millet (Pennisetum glaucum L.) Plants by Improving Soil Quality and Enhancing the Antioxidant Defense
title_sort calcium-rich biochar stimulates salt resistance in pearl millet (pennisetum glaucum l.) plants by improving soil quality and enhancing the antioxidant defense
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9145951/
https://www.ncbi.nlm.nih.gov/pubmed/35631726
http://dx.doi.org/10.3390/plants11101301
work_keys_str_mv AT aboelyousrkamalam calciumrichbiocharstimulatessaltresistanceinpearlmilletpennisetumglaucumlplantsbyimprovingsoilqualityandenhancingtheantioxidantdefense
AT mousamagdiaa calciumrichbiocharstimulatessaltresistanceinpearlmilletpennisetumglaucumlplantsbyimprovingsoilqualityandenhancingtheantioxidantdefense
AT ibrahimomerhm calciumrichbiocharstimulatessaltresistanceinpearlmilletpennisetumglaucumlplantsbyimprovingsoilqualityandenhancingtheantioxidantdefense
AT alshareefnoufowdah calciumrichbiocharstimulatessaltresistanceinpearlmilletpennisetumglaucumlplantsbyimprovingsoilqualityandenhancingtheantioxidantdefense
AT eissamamdouha calciumrichbiocharstimulatessaltresistanceinpearlmilletpennisetumglaucumlplantsbyimprovingsoilqualityandenhancingtheantioxidantdefense