Cargando…

Time Trend Analysis of Tuberculosis Treatment While Using Digital Adherence Technologies—An Individual Patient Data Meta-Analysis of Eleven Projects across Ten High Tuberculosis-Burden Countries

Worldwide, non-adherence to tuberculosis (TB) treatment is problematic. Digital adherence technologies (DATs) offer a person-centered approach to support and monitor treatment. We explored adherence over time while using DATs. We conducted a meta-analysis on anonymized longitudinal adherence data fo...

Descripción completa

Detalles Bibliográficos
Autores principales: de Groot, Liza M., Straetemans, Masja, Maraba, Noriah, Jennings, Lauren, Gler, Maria Tarcela, Marcelo, Danaida, Mekoro, Mirchaye, Steenkamp, Pieter, Gavioli, Riccardo, Spaulding, Anne, Prophete, Edwin, Bury, Margarette, Banu, Sayera, Sultana, Sonia, Onjare, Baraka, Efo, Egwuma, Alacapa, Jason, Levy, Jens, Morales, Mona Lisa L., Katamba, Achilles, Bogdanov, Aleksey, Gamazina, Kateryna, Kumarkul, Dzhumagulova, Ekaterina, Orechova-Li, Cattamanchi, Adithya, Khan, Amera, Bakker, Mirjam I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9145978/
https://www.ncbi.nlm.nih.gov/pubmed/35622692
http://dx.doi.org/10.3390/tropicalmed7050065
_version_ 1784716447625248768
author de Groot, Liza M.
Straetemans, Masja
Maraba, Noriah
Jennings, Lauren
Gler, Maria Tarcela
Marcelo, Danaida
Mekoro, Mirchaye
Steenkamp, Pieter
Gavioli, Riccardo
Spaulding, Anne
Prophete, Edwin
Bury, Margarette
Banu, Sayera
Sultana, Sonia
Onjare, Baraka
Efo, Egwuma
Alacapa, Jason
Levy, Jens
Morales, Mona Lisa L.
Katamba, Achilles
Bogdanov, Aleksey
Gamazina, Kateryna
Kumarkul, Dzhumagulova
Ekaterina, Orechova-Li
Cattamanchi, Adithya
Khan, Amera
Bakker, Mirjam I.
author_facet de Groot, Liza M.
Straetemans, Masja
Maraba, Noriah
Jennings, Lauren
Gler, Maria Tarcela
Marcelo, Danaida
Mekoro, Mirchaye
Steenkamp, Pieter
Gavioli, Riccardo
Spaulding, Anne
Prophete, Edwin
Bury, Margarette
Banu, Sayera
Sultana, Sonia
Onjare, Baraka
Efo, Egwuma
Alacapa, Jason
Levy, Jens
Morales, Mona Lisa L.
Katamba, Achilles
Bogdanov, Aleksey
Gamazina, Kateryna
Kumarkul, Dzhumagulova
Ekaterina, Orechova-Li
Cattamanchi, Adithya
Khan, Amera
Bakker, Mirjam I.
author_sort de Groot, Liza M.
collection PubMed
description Worldwide, non-adherence to tuberculosis (TB) treatment is problematic. Digital adherence technologies (DATs) offer a person-centered approach to support and monitor treatment. We explored adherence over time while using DATs. We conducted a meta-analysis on anonymized longitudinal adherence data for drug-susceptible (DS) TB (n = 4515) and drug-resistant (DR) TB (n = 473) populations from 11 DAT projects. Using Tobit regression, we assessed adherence for six months of treatment across sex, age, project enrolment phase, DAT-type, health care facility (HCF), and project. We found that DATs recorded high levels of adherence throughout treatment: 80% to 71% of DS-TB patients had ≥90% adherence in month 1 and 6, respectively, and 73% to 75% for DR-TB patients. Adherence increased between month 1 and 2 (DS-TB and DR-TB populations), then decreased (DS-TB). Males displayed lower adherence and steeper decreases than females (DS-TB). DS-TB patients aged 15–34 years compared to those >50 years displayed steeper decreases. Adherence was correlated within HCFs and differed between projects. TB treatment adherence decreased over time and differed between subgroups, suggesting that over time, some patients are at risk for non-adherence. The real-time monitoring of medication adherence using DATs provides opportunities for health care workers to identify patients who need greater levels of adherence support.
format Online
Article
Text
id pubmed-9145978
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-91459782022-05-29 Time Trend Analysis of Tuberculosis Treatment While Using Digital Adherence Technologies—An Individual Patient Data Meta-Analysis of Eleven Projects across Ten High Tuberculosis-Burden Countries de Groot, Liza M. Straetemans, Masja Maraba, Noriah Jennings, Lauren Gler, Maria Tarcela Marcelo, Danaida Mekoro, Mirchaye Steenkamp, Pieter Gavioli, Riccardo Spaulding, Anne Prophete, Edwin Bury, Margarette Banu, Sayera Sultana, Sonia Onjare, Baraka Efo, Egwuma Alacapa, Jason Levy, Jens Morales, Mona Lisa L. Katamba, Achilles Bogdanov, Aleksey Gamazina, Kateryna Kumarkul, Dzhumagulova Ekaterina, Orechova-Li Cattamanchi, Adithya Khan, Amera Bakker, Mirjam I. Trop Med Infect Dis Article Worldwide, non-adherence to tuberculosis (TB) treatment is problematic. Digital adherence technologies (DATs) offer a person-centered approach to support and monitor treatment. We explored adherence over time while using DATs. We conducted a meta-analysis on anonymized longitudinal adherence data for drug-susceptible (DS) TB (n = 4515) and drug-resistant (DR) TB (n = 473) populations from 11 DAT projects. Using Tobit regression, we assessed adherence for six months of treatment across sex, age, project enrolment phase, DAT-type, health care facility (HCF), and project. We found that DATs recorded high levels of adherence throughout treatment: 80% to 71% of DS-TB patients had ≥90% adherence in month 1 and 6, respectively, and 73% to 75% for DR-TB patients. Adherence increased between month 1 and 2 (DS-TB and DR-TB populations), then decreased (DS-TB). Males displayed lower adherence and steeper decreases than females (DS-TB). DS-TB patients aged 15–34 years compared to those >50 years displayed steeper decreases. Adherence was correlated within HCFs and differed between projects. TB treatment adherence decreased over time and differed between subgroups, suggesting that over time, some patients are at risk for non-adherence. The real-time monitoring of medication adherence using DATs provides opportunities for health care workers to identify patients who need greater levels of adherence support. MDPI 2022-04-22 /pmc/articles/PMC9145978/ /pubmed/35622692 http://dx.doi.org/10.3390/tropicalmed7050065 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
de Groot, Liza M.
Straetemans, Masja
Maraba, Noriah
Jennings, Lauren
Gler, Maria Tarcela
Marcelo, Danaida
Mekoro, Mirchaye
Steenkamp, Pieter
Gavioli, Riccardo
Spaulding, Anne
Prophete, Edwin
Bury, Margarette
Banu, Sayera
Sultana, Sonia
Onjare, Baraka
Efo, Egwuma
Alacapa, Jason
Levy, Jens
Morales, Mona Lisa L.
Katamba, Achilles
Bogdanov, Aleksey
Gamazina, Kateryna
Kumarkul, Dzhumagulova
Ekaterina, Orechova-Li
Cattamanchi, Adithya
Khan, Amera
Bakker, Mirjam I.
Time Trend Analysis of Tuberculosis Treatment While Using Digital Adherence Technologies—An Individual Patient Data Meta-Analysis of Eleven Projects across Ten High Tuberculosis-Burden Countries
title Time Trend Analysis of Tuberculosis Treatment While Using Digital Adherence Technologies—An Individual Patient Data Meta-Analysis of Eleven Projects across Ten High Tuberculosis-Burden Countries
title_full Time Trend Analysis of Tuberculosis Treatment While Using Digital Adherence Technologies—An Individual Patient Data Meta-Analysis of Eleven Projects across Ten High Tuberculosis-Burden Countries
title_fullStr Time Trend Analysis of Tuberculosis Treatment While Using Digital Adherence Technologies—An Individual Patient Data Meta-Analysis of Eleven Projects across Ten High Tuberculosis-Burden Countries
title_full_unstemmed Time Trend Analysis of Tuberculosis Treatment While Using Digital Adherence Technologies—An Individual Patient Data Meta-Analysis of Eleven Projects across Ten High Tuberculosis-Burden Countries
title_short Time Trend Analysis of Tuberculosis Treatment While Using Digital Adherence Technologies—An Individual Patient Data Meta-Analysis of Eleven Projects across Ten High Tuberculosis-Burden Countries
title_sort time trend analysis of tuberculosis treatment while using digital adherence technologies—an individual patient data meta-analysis of eleven projects across ten high tuberculosis-burden countries
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9145978/
https://www.ncbi.nlm.nih.gov/pubmed/35622692
http://dx.doi.org/10.3390/tropicalmed7050065
work_keys_str_mv AT degrootlizam timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries
AT straetemansmasja timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries
AT marabanoriah timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries
AT jenningslauren timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries
AT glermariatarcela timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries
AT marcelodanaida timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries
AT mekoromirchaye timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries
AT steenkamppieter timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries
AT gavioliriccardo timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries
AT spauldinganne timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries
AT propheteedwin timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries
AT burymargarette timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries
AT banusayera timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries
AT sultanasonia timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries
AT onjarebaraka timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries
AT efoegwuma timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries
AT alacapajason timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries
AT levyjens timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries
AT moralesmonalisal timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries
AT katambaachilles timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries
AT bogdanovaleksey timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries
AT gamazinakateryna timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries
AT kumarkuldzhumagulova timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries
AT ekaterinaorechovali timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries
AT cattamanchiadithya timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries
AT khanamera timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries
AT bakkermirjami timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries