Cargando…
Time Trend Analysis of Tuberculosis Treatment While Using Digital Adherence Technologies—An Individual Patient Data Meta-Analysis of Eleven Projects across Ten High Tuberculosis-Burden Countries
Worldwide, non-adherence to tuberculosis (TB) treatment is problematic. Digital adherence technologies (DATs) offer a person-centered approach to support and monitor treatment. We explored adherence over time while using DATs. We conducted a meta-analysis on anonymized longitudinal adherence data fo...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9145978/ https://www.ncbi.nlm.nih.gov/pubmed/35622692 http://dx.doi.org/10.3390/tropicalmed7050065 |
_version_ | 1784716447625248768 |
---|---|
author | de Groot, Liza M. Straetemans, Masja Maraba, Noriah Jennings, Lauren Gler, Maria Tarcela Marcelo, Danaida Mekoro, Mirchaye Steenkamp, Pieter Gavioli, Riccardo Spaulding, Anne Prophete, Edwin Bury, Margarette Banu, Sayera Sultana, Sonia Onjare, Baraka Efo, Egwuma Alacapa, Jason Levy, Jens Morales, Mona Lisa L. Katamba, Achilles Bogdanov, Aleksey Gamazina, Kateryna Kumarkul, Dzhumagulova Ekaterina, Orechova-Li Cattamanchi, Adithya Khan, Amera Bakker, Mirjam I. |
author_facet | de Groot, Liza M. Straetemans, Masja Maraba, Noriah Jennings, Lauren Gler, Maria Tarcela Marcelo, Danaida Mekoro, Mirchaye Steenkamp, Pieter Gavioli, Riccardo Spaulding, Anne Prophete, Edwin Bury, Margarette Banu, Sayera Sultana, Sonia Onjare, Baraka Efo, Egwuma Alacapa, Jason Levy, Jens Morales, Mona Lisa L. Katamba, Achilles Bogdanov, Aleksey Gamazina, Kateryna Kumarkul, Dzhumagulova Ekaterina, Orechova-Li Cattamanchi, Adithya Khan, Amera Bakker, Mirjam I. |
author_sort | de Groot, Liza M. |
collection | PubMed |
description | Worldwide, non-adherence to tuberculosis (TB) treatment is problematic. Digital adherence technologies (DATs) offer a person-centered approach to support and monitor treatment. We explored adherence over time while using DATs. We conducted a meta-analysis on anonymized longitudinal adherence data for drug-susceptible (DS) TB (n = 4515) and drug-resistant (DR) TB (n = 473) populations from 11 DAT projects. Using Tobit regression, we assessed adherence for six months of treatment across sex, age, project enrolment phase, DAT-type, health care facility (HCF), and project. We found that DATs recorded high levels of adherence throughout treatment: 80% to 71% of DS-TB patients had ≥90% adherence in month 1 and 6, respectively, and 73% to 75% for DR-TB patients. Adherence increased between month 1 and 2 (DS-TB and DR-TB populations), then decreased (DS-TB). Males displayed lower adherence and steeper decreases than females (DS-TB). DS-TB patients aged 15–34 years compared to those >50 years displayed steeper decreases. Adherence was correlated within HCFs and differed between projects. TB treatment adherence decreased over time and differed between subgroups, suggesting that over time, some patients are at risk for non-adherence. The real-time monitoring of medication adherence using DATs provides opportunities for health care workers to identify patients who need greater levels of adherence support. |
format | Online Article Text |
id | pubmed-9145978 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91459782022-05-29 Time Trend Analysis of Tuberculosis Treatment While Using Digital Adherence Technologies—An Individual Patient Data Meta-Analysis of Eleven Projects across Ten High Tuberculosis-Burden Countries de Groot, Liza M. Straetemans, Masja Maraba, Noriah Jennings, Lauren Gler, Maria Tarcela Marcelo, Danaida Mekoro, Mirchaye Steenkamp, Pieter Gavioli, Riccardo Spaulding, Anne Prophete, Edwin Bury, Margarette Banu, Sayera Sultana, Sonia Onjare, Baraka Efo, Egwuma Alacapa, Jason Levy, Jens Morales, Mona Lisa L. Katamba, Achilles Bogdanov, Aleksey Gamazina, Kateryna Kumarkul, Dzhumagulova Ekaterina, Orechova-Li Cattamanchi, Adithya Khan, Amera Bakker, Mirjam I. Trop Med Infect Dis Article Worldwide, non-adherence to tuberculosis (TB) treatment is problematic. Digital adherence technologies (DATs) offer a person-centered approach to support and monitor treatment. We explored adherence over time while using DATs. We conducted a meta-analysis on anonymized longitudinal adherence data for drug-susceptible (DS) TB (n = 4515) and drug-resistant (DR) TB (n = 473) populations from 11 DAT projects. Using Tobit regression, we assessed adherence for six months of treatment across sex, age, project enrolment phase, DAT-type, health care facility (HCF), and project. We found that DATs recorded high levels of adherence throughout treatment: 80% to 71% of DS-TB patients had ≥90% adherence in month 1 and 6, respectively, and 73% to 75% for DR-TB patients. Adherence increased between month 1 and 2 (DS-TB and DR-TB populations), then decreased (DS-TB). Males displayed lower adherence and steeper decreases than females (DS-TB). DS-TB patients aged 15–34 years compared to those >50 years displayed steeper decreases. Adherence was correlated within HCFs and differed between projects. TB treatment adherence decreased over time and differed between subgroups, suggesting that over time, some patients are at risk for non-adherence. The real-time monitoring of medication adherence using DATs provides opportunities for health care workers to identify patients who need greater levels of adherence support. MDPI 2022-04-22 /pmc/articles/PMC9145978/ /pubmed/35622692 http://dx.doi.org/10.3390/tropicalmed7050065 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article de Groot, Liza M. Straetemans, Masja Maraba, Noriah Jennings, Lauren Gler, Maria Tarcela Marcelo, Danaida Mekoro, Mirchaye Steenkamp, Pieter Gavioli, Riccardo Spaulding, Anne Prophete, Edwin Bury, Margarette Banu, Sayera Sultana, Sonia Onjare, Baraka Efo, Egwuma Alacapa, Jason Levy, Jens Morales, Mona Lisa L. Katamba, Achilles Bogdanov, Aleksey Gamazina, Kateryna Kumarkul, Dzhumagulova Ekaterina, Orechova-Li Cattamanchi, Adithya Khan, Amera Bakker, Mirjam I. Time Trend Analysis of Tuberculosis Treatment While Using Digital Adherence Technologies—An Individual Patient Data Meta-Analysis of Eleven Projects across Ten High Tuberculosis-Burden Countries |
title | Time Trend Analysis of Tuberculosis Treatment While Using Digital Adherence Technologies—An Individual Patient Data Meta-Analysis of Eleven Projects across Ten High Tuberculosis-Burden Countries |
title_full | Time Trend Analysis of Tuberculosis Treatment While Using Digital Adherence Technologies—An Individual Patient Data Meta-Analysis of Eleven Projects across Ten High Tuberculosis-Burden Countries |
title_fullStr | Time Trend Analysis of Tuberculosis Treatment While Using Digital Adherence Technologies—An Individual Patient Data Meta-Analysis of Eleven Projects across Ten High Tuberculosis-Burden Countries |
title_full_unstemmed | Time Trend Analysis of Tuberculosis Treatment While Using Digital Adherence Technologies—An Individual Patient Data Meta-Analysis of Eleven Projects across Ten High Tuberculosis-Burden Countries |
title_short | Time Trend Analysis of Tuberculosis Treatment While Using Digital Adherence Technologies—An Individual Patient Data Meta-Analysis of Eleven Projects across Ten High Tuberculosis-Burden Countries |
title_sort | time trend analysis of tuberculosis treatment while using digital adherence technologies—an individual patient data meta-analysis of eleven projects across ten high tuberculosis-burden countries |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9145978/ https://www.ncbi.nlm.nih.gov/pubmed/35622692 http://dx.doi.org/10.3390/tropicalmed7050065 |
work_keys_str_mv | AT degrootlizam timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries AT straetemansmasja timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries AT marabanoriah timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries AT jenningslauren timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries AT glermariatarcela timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries AT marcelodanaida timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries AT mekoromirchaye timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries AT steenkamppieter timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries AT gavioliriccardo timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries AT spauldinganne timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries AT propheteedwin timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries AT burymargarette timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries AT banusayera timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries AT sultanasonia timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries AT onjarebaraka timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries AT efoegwuma timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries AT alacapajason timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries AT levyjens timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries AT moralesmonalisal timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries AT katambaachilles timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries AT bogdanovaleksey timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries AT gamazinakateryna timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries AT kumarkuldzhumagulova timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries AT ekaterinaorechovali timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries AT cattamanchiadithya timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries AT khanamera timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries AT bakkermirjami timetrendanalysisoftuberculosistreatmentwhileusingdigitaladherencetechnologiesanindividualpatientdatametaanalysisofelevenprojectsacrosstenhightuberculosisburdencountries |